ULLRCHALUMINIUM

Extrusions

EDITION 16

The Ullrich Aluminium Extrusion Process

Extrusion Production is by far the most complex and dedicated phase in the process of providing our extruded profiles. It requires the specific technology, technical skills and experience gained from our decades long history as a family owned company to achieve this.

The extensive process moves from the creation of specific Steel Dies (matrices), whose design is entrusted to expert technicians, assisted by the most modern means of CAD two-dimensional and three-dimensional shape designs. During the extrusion process the suitably preheated Aluminium Billets are pushed under pressure by the ram of our press through the designed Die, this then transforms the extrusion into long profiled lengths by one of our three presses which vary in power, from 2000 to 2500 tons.

Ullrich Aluminium has the production capacity to supply small, medium and large profiles up to 15.4 metres in length, and 10 kg per metre in weight. The extrusion is produced in compliance to the working tolerances of the AS/NZS 1866 Standard. That ensures the assembly of finished components and facilitates the obtainment of quality certification of the final product.

After their extrusion, the profiled sections are subjected to Straightening (stretching), a process that brings profiles within the required lineal tolerances. Then once cut to the required length they are transferred into special ageing ovens for the tempering process, which achieves their optimal tensile strengths. The packing stations are the final phase in the production line, where the profiles are packed and protected in preparation for the subsequent stages of storage, transport or delivery to destination.

Ullrich Aluminium constantly strives to offer its customers valuable assistance, aimed at optimising an outcome in which to achieve the best possible design, processing and execution times for the profiles. We also strive to provide a positive response to different needs of a technical or aesthetic nature.

Our in-house developed production control system makes it possible to track the requests submitted by the customer and to monitor the progress of the project during the production process. This tracking can be beneficial for our numerous Australian, New Zealand and Export clients.

When you need Extruded Aluminium Products think of Ullrich Aluminium as your first stop for assistance on your journey forward. Our 46 facilities in all major cities and regions of Australia and New Zealand will be pleased to provide you with a quality of service experience.

Kind Regards

Gilbert Ullrich
CEO

ULLRICH ALUMINIUM EXTRUSION CATALOGUE

EDITION I 6

A COMPREHENSIVE CATALOGUE
 OF ALUMINIUM EXTRUSIONS

FROM THE ULLEXCO DIVISION OF
ULLRICH ALUMINIUM COMPANY LTD,
A 100\% NEW ZEALAND OWNED AND
OPERATED COMPANY
"Ullexco will meet all customer requirements
to ISO 900 I and is committed to achieving
continual improvement across all aspects of our quality management system."

GilbertW Ullrich
CEO
2018

Ullrich Aluminium Company Ltd
39-45 Maui Street Pukete Industrial Estate
PO Box II38 Hamilton 3240 New Zealand

CATALOGUE GUIDELINES	iii
THE ULLRICH SERVICE NETWORK	iv - v
ULLRICH DIE INDEX	vii - xiv
PRODUCT CATEGORIES:	
STANDARD PROFILES	SECTION I
Equal \& Unequal Angle	
Channel	
Square \& Rectangular Hollow	
Extruded Round Tube	
Drawn Round Tube	
Solid Round, Square, Hexagon	
Solid Free Machining Rod	
Machining Flat Bar	
Flat Bar	
Tee, Half Round, Cope Mould	
Zed, I Beam, Top Hat	

AWNING \& DRIP MOULDS	SECTION 6
BALUSTRADE	SECTION 21
COMMERCIAL DOOR	SECTION I5
COOLROOM	SECTION 2
DUCTING	SECTION 13
Multipurpose Cable, Power, Telephone.	
FENCING	SECTION 21
FLYSCREEN	SECTION 10
Heatsink	SECTION II
HERZIM INFILL MOULDINGS	SECTION 6
LOUVRE	SECTION 12
Marine	SECTION 5
Miscellaneous	SECTION 17
MODULAR DESIGN SYSTEM	SECTION 22
PALLET	SECTION 23
PARTITIONING SYSTEMS	SECTION 16
Designer, Designer 1000, Toilet.	
SECURITY DOOR \& WINDOW	SECTION 9
SHOP FRONT	SECTION I5
T2, $75 \mathrm{~mm}, 100 \mathrm{~mm}$, General.	
SIGN SECTIONS	SECTION 20
Frames, Street, Sign Panel.	
STAIR NOSING \& FLOORING	SECTION 4
STORM SHUTTERS	SECTION 24

Storm Shutter, Accordion Storm Shutter.
THRESHOLD SECTION 3
TRANSPORT SECTION 7

ULLTRACLAD CLADDING SYSTEM SECTION 14
WALLBOARD SECTION 8
Caps, Jointers, Internal - External Corners.
WARDROBETRACKS
SECTION I8
Cavity, Vee Glide.
WEATHER SEAL
SECTION 19

USEFUL INFORMATION APPENDIX

Catalogue features	Edition 16 features include:
- The Ullrich service network	
- Numeric die number index	
- Cataloging by section to industry type	
- Die and description index for each section	
- Accurate, actual size profile diagrams	
- Related profile data in easy-reference lists	
- Assembly hints and diagrams	
- Extrusion terminology	
- Aluminium properties and tolerances data	
- Historical information	
- Handling and storage guidance	
- Surface treatment and cleaning information	
- Imperial-metric conversion tables	
- Graph pages for planning and notes	
- Internet-accessible profile drawings	
Acknowledgments	
Every effort has been made to ensure accuracy	
and the most up-to-date information in the	
compilation of this catalogue. However, Ullich	
Aluminium Company Ltd does not accept	

ULLRICH ALUMINIUM SALES CENTRES

WHANGAREI

2 Gumdigger Place Raumanga
PO Box 1694 Whangarei 0140
Tel 094387380
Fax 094384587
Email: whgrsls@uacl.co.nz

SILVERDALE

24 Anvil Road Silverdale
Hibiscus Coast 0932
Tel 094270017
Fax 094270030
Email: silvsales@uacl.co.nz

AUCKLAND WEST

65 The Concourse
Henderson 0610
Tel 09836 6061
Fax 09835 I365
Email: hendsls@uacl.co.nz

AUCKLAND CENTRAL

151 Neilson Street Onehunga
PO Box 22244 Otahuhu 1640
Tel 092763789
Fax 092767814
Email: onesls@uacl.co.nz

AUCKLAND SOUTH

II8Wiri Station Road Wiri
PO Box 98843 Manukau City
Auckland 224I
Tel 092626262
Fax 092626266
Email: alkalum@uacl.co.nz

EXPORT DIVISION

118 Wiri Station Road Wiri
PO Box 98843 Manukau City
Auckland 224I
Tel 092626262
Fax 092626267
Email: exports@uacl.co.nz

NZ BUILDING PRODUCTS

ULLTRACLAD
Mob 02I 54I 563
Tel 092626262
Email: acleaver@uacl.co.nz

TAURANGA

17 MacDonald Street
PO Box 4492 Mt Maunganui 3149
Tel 075753499
Fax 075750218
Email: taurgsls@uacl.co.nz

HAMILTON

39-45 Maui Street
PO Box II38 Hamilton 3240
Tel 078492909
Fax 078492589
Email: hamsls@uacl.co.nz

ROTORUA

124 Riri Street
PO Box 965 Rotorua 3040
Tel 073468213
Fax 073468215
Email: rotsls@uacl.co.nz

NAPIER

Cnr Niven \& Edmundson Streets
PO Box 695 Napier 4140
Tel 06843 3114
Fax 068433185
Email: napsls@uacl.co.nz

NEW PLYMOUTH

75-77 Hurlstone Drive Waiwhakaiho PO Box 3361 Fitzroy
New Plymouth 434I
Tel 067599120
Fax 067591598
Email: nplythsls@uacl.co.nz

PALMERSTON NORTH

8 Railway Road Roslyn
PO Box 4054 Palmerston North 4442
Tel 063562007
Fax 063568539
Email: pnthsls@uacl.co.nz

WELLINGTON

IB Cornish Street Korokoro
Private Bag 39810 WMC Lower Hutt 5045
Tel 045688188
Fax 045698759
Email: wgtnsls@uacl.co.nz

NELSON

6a Forests Road Stoke
PO Box 2233 Nelson 704I
Tel 035474103
Fax 035478343
Email: nelsales@uacl.co.nz

CHRISTCHURCH

9 William Lewis Drive Sockburn
PO Box IIO8I Christchurch 8443
Tel 033667939
Fax 033795910
Email: chchsls@uacl.co.nz

TIMARU

60-64 Racecourse Road Washdyke
PO Box 2126 Timaru 794I
Tel 036887649
Fax 036887659
Email: timrsls@uacl.co.nz

DUNEDIN

391 Kaikorai Valley Road Bradford
PO Box 5010 Dunedin 9058
Tel 034530679
Fax 034535958
Email: dunsls@uacl.co.nz

INVERCARGILL

25 Bond Street
PO Box 1681 Invercargill 9840
Tel 032184124
Fax 032184024
Email: invsls@uacl.co.nz

ULLRICH ALUMINIUM SALES CENTRES

DARWIN

I |4 Reichardt Road
Winnellie NT 0820
PO Box 36012 Winnellie NT 0820
Tel 088947 4।57
Fax 088947 4167

CAIRNS

16 Spoto Street Woree QLD 4868
PO Box 225 Bungalow QLD 4870
Tel 0740546662
Fax 0740547453

TOWNSVILLE

5 Whitehouse Street Garbutt
Townsville 4814
PO Box 8065 BC Garbutt QLD 4814
Tel 0747207100
Fax 0747289109

MACKAY

I05-III Maggilo Drive
Paget Mackay
PO Box 5991 Mackay MC QLD 474I
Tel 0749524552
Fax 074952 4I 57

ROCKHAMPTON

103 Stanley Street
Rockhampton QLD 4700
Tel 07 492। 4228
Fax 0749214037

WIDE BAY

48B Lower Mountain Road
Dundowran QLD 4655
Tel 0741969000
Fax 07 4I91 4952

CALOUNDRA

37 Enterprise Street Caloundra PO Box 3890 Caloundra QLD 455I
Tel 0754928587
Fax 075492 8I 57

NORTHGATE

2/I25 Crockford Street Northgate PO Box 395 Northgate QLD 4013
Tel 0733356700
Fax 0732665618

BRISBANE

20 Ron Boyle Crescent
Carole Park QLD 4300
PO Box 246 Carole Park QLD 4300
Tel 07 3718 1400
Fax 07 327I I230

GOLD COAST

24 Township Drive
West Burleigh 4219
PO Box 3645 Burleigh Town QLD 4220
Tel 0755202799
Fax 0755202844

GOLD COAST

(WINTEC / ULLTRACLAD)
Unit I, 63-68 Dover Drive
Andrews QLD 4220
PO Box 2494 Burleigh BC QLD 4220
Tel 0755354477
Fax 0755354744

COFFS HARBOUR

I3 Cook Drive
Coffs Harbour NSW 2450
Tel 0266528326
Fax 0266528426

NEWCASTLE

6 Steel River Boulevard
Mayfield West NSW 2304
PO Box 326 HRMC
Warabrook NSW 2310
Tel 0249492600
Fax 0249492601

SYDNEY

I85-I87 Woodpark Road
Smithfield NSW 2164
PO Box 2182 Smithfield 2164
Tel 0287877400
Fax 0297252784

SMEATON GRANGE

I5 Blackmore Road
Smeaton Grange NSW 2567
Tel 0246479695
Fax 0246479261

BATHURST

IO Bradwardine Road
Robin Hill NSW 2795
Tel 0263344333
Fax 0263344434

CANBERRA

10 Arnott Street
Hume ACT 2620
PO Box 1225 Fyshwick ACT 2609
Tel 026260 201I
Fax 0262602133

ALBURY - WODONGA

8 Stead Street
Wodonga VIC 3690
Tel 0260597555
Fax 0260597544

MELBOURNE

893 Princes Highway
Springvale VIC3I7I
PO Box 1054 Clayton South 3169
Tel 0395677200
Fax 039540 85II

ADELAIDE

868-872 Main Road North
Pooraka SA5095
PO Box 3 Pooraka SA 5095
Tel 0883002500
Fax 0883002510

PERTH

17 King Street
Bayswater 6053
PO Box 49 Bayswater WA 6053
Tel 0894734700
Fax 0893703995

BUNBURY

15 Ditchingham Place
Australind WA 6233
Tel 0897259900
Fax 0897259955

LAUNCESTON

I20 Forster Street
Invermay 7248
PO Box 1494 Launceston TAS 7250
Tel 0363348769
Fax 0363349714

HOBART

123 Albert Road Moonah
PO Box 217 Moonah TAS 7009
Tel 0362780000
Fax 0362781922

DIE No	PAGE	DIE No	PAGE	DIE No	PAGE	
UA 1004	1-2\|	UA 1117	1-3	UA 1172	I-2\|	
UA 1006	17-6	UA III8	1-2	UA 1173	I-2\|	
UA 1034	16-8	UA III9	I-4	UA 1174	\|-2	
UA 1035	16-8	UA I 120	I-4	UA 1175	\|-2	
UA 1037	13-1	UA 1121	I-I	UA 1176	I-2\|	
UA 1038	13-1	UA 1122	I-I	UA 1177	1-22	
UA 1039	13-1	UA I 123	I-I	UA 1178	I-22	
UA 1040	13-1	UA I 124	I-I	UA 1179	I-2\|	
UA 1041	13-1	UA I 125	I-3	UA 1180	I-2\|	
UA 1042	13-1	UA I 126	I-I	UA 1181	\|-2	
UA 1043	1-6	UA 1127	I-2	UA 1181	16-7	
UA 1043	$13-1$	UA 1128	1-4	UA 1182	I-21	
UA 1046	16-8	UA II 29	I-I	UA 1183	I-22	
UA 1047	16-8	UA II 30	1-5	UA 1184	I-22	
UA 1049	1-9	UA 1131	1-5	UA 1185	I-23	
UA 1050	1-8	UA 1132	1-5	UA 1186	I-23	
UA 1054	$10-1$	UA II 33	1-5	UA 1187	I-23	
UA 1055	24-1	UA II 34	1-5	UA 1188	I-21	
UA 1056	24-I	UA II35	1-6	UA 1189	I-2\|	
UA 1057	24-1	UA 1136	1-6	UA 1190	\|-2	
UA 1063	12-1	UA 1137	1-5	UA 1191	\|-2	
UA 1064	12-1	UA II38	1-5	UA 1192	1-22	
UA 1065	12-1	UA II39	1-5	UA 1193	I-22	
UA 1068	1-3	UA 1140	1-5	UA 1194	I-22	
UA 1070	15-7	UA 1141	1-5	UA 1195	I-25	
UA 1073	1-16	UA 1142	1-5	UA 1196	I-25	
UA 1074	1-22	UA 1143	1-5	UA 1197	I-II	
UA 1089	12-2	UA II44	1-6	UA 1198	I-12	
UA 1090	I-I	UA 1145	1-6	UA 1199	I-12	
UA 1091	I-I	UA 1146	1-6	UA 1200	I-II	
UA 1092	I-I	UA 1147	1-6	UA 1201	I-12	
UA 1093	I-3	UA 1148	1-6	UA 1202	I-12	
UA 1094	1-1	UA II49	1-6	UA 1203	I-12	
UA 1095	I-3	UA II 50	1-6	UA 1204	I-12	
UA 1096	1-1	UA 1151	1-2\|	UA 1205	1-8	
UA 1097	1-1	UA 1152	I-2\|	UA 1206	1-8	
UA 1098	I-3	UA II 53	\|-2		UA 1207	1-8
UA 1099	I-I	UA II54	I-2\|	UA 1208	1-9	
UA I 100	I-I	UA 1155	1-22	UA 1210	1-8	
UA IIOI	1-1	UA 1156	1-22	UA 1211	I-8	
UA I 102	I-3	UA II57	1-23	UA 1212	1-8	
UA I 103	1-1	UA 1158	I-23	UA 1212	21-5	
UA II 104	I-3	UA II59	I-2\|	UA 1213	1-9	
UA I 105	1-1	UA 1160	I-2\|	UA 1214	1-9	
UA 1106	I-3	UA 1161	I-22	UA 1215	1-9	
UA I 107	I-I	UA 1162	I-22	UA 1216	I-24	
UA IIO8	I-3	UA 1163	I-22	UA 1217	I-24	
UA IIO9	I-3	UA 1164	I-2\|	UA 1218	I-24	
UA IIIO	1-1	UA I 165	1-2\|	UA 1219	I-24	
UA IIII	I-3	UA 1166	1-23	UA 1220	I-24	
UA III2	I-3	UA 1167	I-22	UA 1221	I-25	
UA III3	I-I	UA 1168	I-22	UA 1222	1-25	
UA III4	I-I	UA 1169	I-23	UA 1223	I-25	
UA III5	1-3	UA I 170	\|-2		UA 1225	1-14
UA III6	I-I	UA II7I	I-2\|	UA 1225	21-6	

DIE No	PAGE
UA 1226	I-14
UA 1227	I-14
UA 1228	I-16
UA 1229	I-14
UA 1230	I-14
UA 1231	I-14
UA 1232	1-14
UA 1233	I-14
UA 1234	I-14
UA 1235	I-14
UA 1236	I-15
UA 1237	I-15
UA 1238	I-15
UA 1239	I-15
UA 1240	I-15
UA 124I	I-15
UA 1242	1-15
UA 1243	I-14
UA 1244	I-16
UA 1245	1-14
UA 1246	I-15
UA 1247	1-16
UA 1248	I-14
UA 1249	I-14
UA 1250	I-15
UA 1251	I-15
UA 1252	1-16
UA 1253	1-16
UA 1254	1-16
UA 1255	1-16
UA 1256	1-15
UA 1257	1-18
UA 1258	1-18
UA 1259	I-18
UA 1260	1-18
UA 1261	1-18
UA 1262	I-18
UA 1263	1-18
UA 1264	1-18
UA 1265	1-18
UA 1266	$1-18$
UA 1267	1-18
UA 1268	1-18
UA 1269	$1-18$
UA 1270	1-18
UA 1271	I-18
UA 1272	1-19
UA 1273	1-19
UA 1274	1-19
UA 1275	1-19
UA 1276	1-19
UA 1277	I-19
UA 1278	1-19

DIE No	PAGE						
UA 1279	1-19	UA 1343	17-1	UA 1398	7-1	UA 1451	8-1
UA 1280	I-26	UA 1344	1-24	UA 1399	7-2	UA 1452	8-2
UA 1280	$21-1$	UA 1345	$17-1$	UA 1400	7-1	UA 1453	8-3
UA 1281	1-26	UA 1346	17.6	UA 1402	7-4	UA 1454	8-4
UA 1282	I-26	UA 1347	17-6	UA 1403	7-4	UA 1455	8-1
UA 1283	I-26	UA 1348	17-6	UA 1404	7-6	UA 1456	8-2
UA 1284	1-26	UA 1349	19.1	UA 1405	7-2	UA 1457	8-3
UA 1285	15-3	UA 1350	17-3	UA 1406	6-1	UA 1458	8-4
UA 1286	15-3	UA 1351	17-3	UA 1407	6-1	UA 1459	8-4
UA 1287	15-3	UA 1352	17-4	UA 1408	6-1	UA 1460	8-2
UA 1288	15-3	UA 1353	17-4	UA 1409	6-1	UA 1461	8-1
UA 1289	15-3	UA 1354	17-4	UA 1410	6-1	UA 1472	8-2
UA 1290	15-3	UA 1355	$10-1$	UA 1411	6-1	UA 1473	8-2
UA 1291	15-3	UA 1356	17-4	UA 1412	6-1	UA 1474	2-2
UA 1291	15-4	UA 1357	3-1	UA 1413	6-1	UA 1483	6-2
UA 1292	15-3	UA 1359	17-3	UA 1414	6-1	UA 1486	7-1
UA 1292	15-5	UA 1363	17-4	UA 1415	5-1	UA 1487	1-25
UA 1292	17-5	UA 1366	20-2	UA 1416	5-2	UA 1488	3-1
UA 1293	15.6	UA 1367	20-2	UA 1417	6-2	UA 1489	3-1
UA 1294	15-6	UA 1368	12-1	UA 1418	5-2	UA 1490	3-1
UA 1295	15-4	UA 1369	17-6	UA 1419	5-2	UA 1491	4-2
UA 1296	15-5	UA 1370	17-6	UA 1420	5-2	UA 1492	17-4
UA 1297	15-5	UA 1371	1-8	UA 1421	5-2	UA 1493	1-25
UA 1298	15-6	UA 1371	22-1	UA 1422	5-2	UA 1494	7-3
UA 1299	15-4	UA 1372	22-1	UA 1423	5-2	UA 1495	4-3
UA 1300	15-7	UA 1374	I-5	UA 1424	5-2	UA 1496	4-3
UA 1301	15-7	UA 1374	$9-1$	UA 1425	5-2	UA 1497	4-3
UA 1302	15-7	UA 1375	$9-1$	UA 1426	6-3	UA 1498	4-3
UA 1303	15-7	UA 1376	$9-1$	UA 1426	3-1	UA 1499	1-25
UA 1303	15-8	UA 1377	$9-1$	UA 1427	6-2	UA 1500	1-25
UA 1304	15-7	UA 1379	9-2	UA 1428	6-2	UA 1501	1-25
UA 1305	15-7	UA 1379	9-4	UA 1429	6-2	UA 1502	2-1
UA 1306	15-7	UA 1379	$10-1$	UA 1430	6-2	UA 1503	2-1
UA 1307	15-8	UA 1380	10-2	UA 1431	6-2	UA 1504	2-1
UA 1308	15-7	UA 1381	10-3	UA 1432	4-1	UA 1505	2-3
UA 1309	15-6	UA 1382	10-3	UA 1433	4-I	UA 1506	2-3
UA 1310	9-2	UA 1383	1-5	UA 1434	4-1	UA 1508	1-21
UA 1310	15-7	UA 1383	10-2	UA 1435	$4-1$	UA 1509	7-5
UA 1310	$19-1$	UA 1384	1-5	UA 1436	4-I	UA 1510	7-4
UA 1313	16-8	UA 1384	10-2	UA 1437	4-I	UA 1511	7-5
UA 1314	16-8	UA 1385	$10-1$	UA 1438	19-1	UA 1512	2-2
UA 1315	$16-7$	UA 1386	$10-1$	UA 1439	4-2	UA 1513	$10-1$
UA 1316	16-7	UA 1387	9-1	UA 1440	4-2	UA 1513	20-6
UA 1318	5-1	UA 1388	$10-1$	UA 1441	4-2	UA 1517	2-2
UA 1332	20-2	UA 1389	$10-1$	UA 1442	4-1	UA 1518	2-2
UA 1333	15-3	UA 1390	17-6	UA 1443	1-25	UA 1519	5-1
UA 1333	15-4	UA 1391	17-6	UA 1444	1-25	UA 1520	5-1
UA 1333	$21-1$	UA 1392	17-6	UA 1445	1-25	UA 1521	$19-1$
UA 1333	21-2	UA 1393	7-6	UA 1446	1-25	UA 1522	19-1
UA 1340	17-5	UA 1395	7-6	UA 1447	1-25	UA 1523	2-3
UA 1341	17-1	UA 1396	7-5	UA 1448	1-25	UA 1524	1-3
UA 1342	17-1	UA 1397	7-2	UA 1449	1-25	UA 1525	1-3
						UA 1526	I-I
	DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED AMS ARE SCHEMATIC ONLY AND NOT INTENDED AS OAD = OVERALL DIMENSIO $\mathbf{P}=\mathrm{EXT}$ PERIPHERY						

DIE No	PAGE	DIE No	PAGE	DIE No	PAGE
UA 1527	I-I	UA 1595	13-2	UA 1659	I-17
UA 1528	1-4	UA 1596	13-2	UA 1661	12-1
UA 1529	I-3	UA 1597	13-2	UA 1662	1-8
UA 1530	1-3	UA 1598	13-4	UA 1663	17-9
UA 1531	I-3	UA 1600	13-2	UA 1671	1-6
UA 1532	I-I	UA 1605	6-2	UA 1672	16-7
UA 1533	1-3	UA 1606	6-2	UA 1678	17-9
UA 1534	1-3	UA 1607	1-19	UA 1679	17-9
UA 1535	1-3	UA 1608	6-1	UA 1680	1-16
UA 1536	1-12	UA 1609	1-5	UA 1711	1-1
UA 1537	1-12	UA 1609	$9-1$	UA 1712	1-2
UA 1538	1-16	UA 1609	10-1	UA 1713	1-5
UA 1540	1-16	UA 1610	10-1	UA 1714	1-24
UA 1542	1-14	UA 1611	10-1	UA 1731	1-3
UA 1543	I-24	UA 1612	I-I	UA 1732	1-3
UA 1544	I-24	UA 1613	1-1	UA 1737	1-14
UA 1545	I-24	UA 1614	1-4	UA 1738	$9-1$
UA 1546	1-8	UA 1615	I-4	UA 1764	1-8
UA 1547	1-9	UA 1616	I-5	UA 1765	1-8
UA 1550	I-22	UA 1617	1-5	UA 1768	1-15
UA 1551	1-2\|	UA 1618	1-22	UA 1769	1-16
UA 1552	I-2I	UA 1619	1-15	UA 1788	16-7
UA 1553	I-2\|	UA 1620	I-26	UA 1806	1-5
UA 1554	I-22	UA 1621	1-26	UA 1809	20-1
UA 1555	1-23	UA 1622	8-3	UA 1810	1-8
UA 1556	1-23	UA 1623	8-1	UA 1820	18-1
UA 1557	I-23	UA 1624	8-2	UA 1821	18-1
UA 1558	I-21	UA 1627	8-1	UA 1822	18-1
UA 1560	1-5	UA 1628	8-2	UA 1824	18-1
UA 1561	1-5	UA 1629	8-2	UA 1825	18-1
UA 1562	1-6	UA 1632	$11-1$	UA 1848	18-1
UA 1563	1-6	UA 1633	\|1-1	UA 1854	13-2
UA 1564	1-6	UA 1634	\|1-1	UA 1855	21-6
UA 1565	1-6	UA 1635	II-I	UA 1857	1-3
UA 1566	1-6	UA 1639	1-25	UA 1862	1-6
UA 1567	I-5	UA 1640	5-3	UA 1864	9-2
UA 1568	1-5	UA 1641	22-1	UA 1864	9-4
UA 1569	1-26	UA 1642	1-8	UA 1867	13-2
UA 1572	12-1	UA 1642	20-6	UA 1868	$1-18$
UA 1573	1-5	UA 1642	22-1	UA 1869	1-8
UA 1573	7-6	UA 1643	17-4	UA 1875	6-3
UA 1573	16-9	UA 1649	9-2	UA 1877	1-22
UA 1574	4-2	UA 1650	1-8	UA 1902	12-1
UA 1575	4-2	UA 1651	1-3	UA 1903	12-I
UA 1576	4-2	UA 1652	1-6	UA 1904	12-1
UA 1577	4-2	UA 1653	1-7	UA 1912	1-8
UA 1581	7-3	UA 1654	1-5	UA 1913	12-1
UA 1583	7-5	UA 1655	1-6	UA 1915	2-2
UA 1584	7-3	UA 1656	1-6	UA 1916	1-14
UA 1593	13-2	UA 1657	1-14	UA 1921	I-2\|
UA 1594	13-4	UA 1658	1-16	UA 1922	8-1

DIE No	PAGE	
UA 1923	1-12	
UA 1924	1-14	
UA 1925	13-2	
UA 1926	I-3	
UA 1927	1-14	
UA 1928	1-14	
UA 1934	16-7	
UA 1941	17-7	
UA 1942	9-3	
UA 1943	9-3	
UA 1948	2-2	
UA 1950	17-4	
UA 1951	17-8	
UA 1952	17-8	
UA 1958	1-24	
UA 1966	1-14	
UA 1967	1-24	
UA 1968	1-14	
UA 1969	1-14	
UA 1974	I-3	
UA 1979	I-11	
UA 1987	1-24	
UA 1988	I-II	
UA 1988	21-1	
UA 1993	2-3	
UA 1994	2-3	
UA 1997	20-1	
UA 1998	I-8	
UA 2000	17-3	
UA 2001	1-14	
UA 2006	I-8	
UA 2009	1-23	
UA 2027	1-14	
UA 2027	18-4	
UA 2028	1-14	
UA 2029	\|-2	
UA 2030	1-13	
UA 2032	20-4	
UA 2033	20-4	
UA 2038	1-18	
UA 2039	17-3	
UA 2046	13-5	
UA 2047	13-5	
UA 2048	1-4	
UA 2062	16-7	
UA 2071	1-1	
UA 2078	I-4	
UA 2080	20-4	
UA 2085	1-21	
UA 2086	17-9	

DIE No	PAGE	DIE No	PAGE	DIE No	PAGE
UA 307I	1-24	UA 3369	I-23	UA 3768	1-5
UA 3079	5-3	UA 3379	1-15	UA 3769	17-1
UA 3088	15-4	UA 3403	8-1	UA 3785	1-3
UA 3089	1-1	UA 3404	8-1	UA 3786	I-II
UA 3096	18-2	UA 3408	1-23	UA 3796	20-3
UA 3097	18-2	UA 3414	12-2	UA 3811	5-1
UA 3098	18-2	UA 3418	5-2	UA 3812	2-5
UA 3100	1-3	UA 3419	1-12	UA 3813	1-26
UA 3101	12-2	UA 3431	12-7	UA 3822	1-17
UA 3102	12-2	UA 3442	12-7	UA 3825	1-9
UA 3130	1-6	UA 3453	$1-14$	UA 3830	2-2
UA 3133	11-2	UA 3464	1-14	UA 3836	2-4
UA 3141	1-14	UA 3465	17-7	UA 3837	2-4
UA 3147	5-3	UA 3467	8-2	UA 3838	2-4
UA 3151	17-7	UA 3479	1-23	UA 3839	1-6
UA 3153	1-21	UA 3482	1-5	UA 3861	1-4
UA 3154	1-2\|	UA 3493	$7-1$	UA 3870	I-4
UA 3164	12-1	UA 3504	1-3	UA 3871	8-1
UA 3178	1-9	UA 3506	1-6	UA 3872	8-2
UA 3178	21-5	UA 3512	10-3	UA 3873	8-4
UA 3204	2-6	UA 3515	I-22	UA 3874	8-3
UA 3205	2-6	UA 3519	I-15	UA 3875	8-3
UA 3206	1-6	UA 3537	1-4	UA 3892	1-15
UA 3209	16-8	UA 3538	1-14	UA 3894	8-2
UA 3212	5-I	UA 3546	I-12	UA 3920	15-5
UA 3213	5-1	AUS 3569	1-16	UA 3921	15-5
UA 3216	1-16	UA 3575	I-26	UA 3922	15-9
UA 3219	17-8	UA 3585	1-12	UA 3923	15-5
UA 3226	1-5	UA 3586	1-12	UA 3929	$9-1$
UA 3227	1-5	UA 3592	9-2	UA 3939	$1-18$
UA 3228	1-5	UA 3595	21-2	UA 3942	1-14
UA 3229	2-6	UA 3596	21-2	UA 3943	5-3
UA 3230	2-6	UA 3597	21-2	UA 3989	20-2
UA 3266	17-9	UA 3614	I-5	UA 3990	20-2
UA 3267	17-7	UA 3614	$9-1$	UA 3996	15-4
UA 3268	17-7	UA 3615	I-5	UA 4007	21-2
UA 3295	11-3	UA 3616	$21-1$	AUS 4048	17-8
UA 3298	1-9	UA 3616	21-6	UA 4050	17-4
UA 3299	1-12	UA 3617	21-2	UA 4062	1-8
UA 3300	1-12	UA 3619	I-11	UA 4075	1-9
UA 3306	1-22	UA 3640	I-22	UA 4076	1-9
UA 3321	1-18	UA 3641	I-22	UA 4077	I-5
UA 3328	$7-1$	UA 3653	12-1	UA 4077	9-1
UA 3339	1-3	UA 3660	1-13	UA 4078	1-8
UA 3344	I-I\|	UA 3703	17-3	UA 4085	12-4
UA 3346	1-9	UA 3714	2-3	AUS 4088	I-II
UA 3347	21-3	UA 3722	1-17	AUS 4089	1-8
UA 3348	21-3	UA 3723	1-17	AUS 4090	I-8
UA 3349	21-3	UA 3724	1-17	UA 4091	1-8
UA 3350	1-9	UA 3747	5-I	UA 4104	1-22
UA 3361	I-I\|	UA 3753	17-9	UA 4110	9-3

DIE No	PAGE
UA 4111	9-3
UA 4112	9-1
UA 4121	1-14
UA 4122	1-15
UA 4123	1-22
UA 4130	17-3
UA 4133	12-8
UA 4134	12-8
UA 4134	21-3
UA 4138	1-15
AUS 4141	7-12
UA 4153	1-14
UA 4173	II-2
UA 4174	1-15
UA 4175	15-8
UA 4202	12-8
UA 4203	12-8
UA 4204	12-8
UA 4205	12-8
UA 4206	12-8
UA 4224	1-24
UA 4225	1-2\|
UA 4227	4-3
UA 4228	4-3
UA 4230	12-6
UA 4231	12-6
UA 4234	I-24
UA 4248	II-3
UA 4254	2-1
UA 4255	2-1
UA 4302	1-9
UA 4305	11-5
AUS 4314	9-4
UA 4316	1-13
AUS 4321	11-5
UA 4353	17-9
UA 4362	16-7
UA 4363	16-7
UA 4364	16-7
UA 4382	17-8
UA 4389	1-25
UA 4394	7-8
UA 4395	7-8
UA 4403	4-1
UA 4405	8-1
UA 4406	8-2
UA 4407	8-4
UA 4408	8-3
UA 4409	8-2

DIE No	PAGE	DIE No	PAGE	DIE No	PAGE
AUS 5722	I-8	UA 5949	16-9	UA 6451	I-II
UA 5723	1-6	UA 5949	21-5	UA 6453	16-9
AUS 5724	1-12	UA 5966	20-1	UA 6454	16-9
UA 5756	1-5	UA 5971	9-2	UA 6455	16-9
UA 5768	12-6	UA 5972	7-6	AUS 6457	2-5
UA 5790	1-2\|	UA 5973	17-7	AUS 6458	1-7
AUS 5800	12-10	AUS 5989	1-16	AUS 6459	1-8
AUS 5801	12-10	UA 6011	17-5	AUS 6460	2-5
AUS 5802	$12-10$	UA 6012	17-5	AUS 6461	21-4
AUS 5803	12-10	UA 6034	7-6	AUS 6462	1-9
AUS 5804	12-10	UA 6054	1-22	AUS 6463	9-4
AUS 5805	12-10	UA 6074	6-1	AUS 6464	I-13
UA 5813	1-25	UA 6084	1-17	UA 6465	1-12
UA 5814	7-9	UA 6148	I-II	UA 6468	I-4
UA 5815	1-8	UA 6153	7-8	AUS 6478	14-4
UA 5818	1-16	UA 6157	1-15	AUS 6485	12-10
UA 5819	20-3	UA 6167	1-22	AUS 6486	I-8
UA 5831	14-3	UA 6168	1-23	AUS 6487	9-4
UA 5832	14-3	UA 6169	1-23	AUS 6488	12-10
UA 5833	14-3	UA 6173	1-24	AUS 6490	20-5
UA 5840	1-14	UA 6214	13-3	AUS 6492	1-16
AUS 5843	I-24	AUS 6244	7-3	AUS 6493	1-2\|
UA 5844	I-24	UA 6246	10-2	AUS 6494	I-6
UA 5854	I-I	UA 6249	1-9	AUS 6495	1-1
AUS 5859	I-22	UA 6250	1-13	AUS 6496	I-I
AUS 5860	1-12	UA 6260	1-24	AUS 6500	21-4
UA 5861	1-8	AUS 6272	17-5	AUS 6501	21-4
UA 5889	5-4	AUS 6282	1-13	AUS 6502	21-4
AUS 5895	2-5	UA 6292	1-16	AUS 6506	1-1\|
AUS 5896	2-5	UA 6323	14-4	AUS 6506	21-7
AUS 5897	2-5	UA 6324	14-4	AUS 6507	$1-11$
AUS 5898	2-5	UA 6339	1-22	AUS 6507	21-7
AUS 5899	2-5	UA 6341	17-1	AUS 6518	9-4
AUS 5900	2-5	UA 6354	1-22	AUS 6520	10-3
AUS 5901	1-6	AUS 6357	17-10	AUS 6522	1-16
UA 5904	1-8	UA 6382	13-3	AUS 6523	1-16
AUS 5905	I-8	UA 6388	7-5	AUS 6524	1-17
UA 5906	1-8	UA 6393	21-6	UA 6526	12-3
AUS 5907	1-5	UA 6394	21-6	UA 6542	16-7
AUS 5908	I-6	UA 6396	21-1	AUS 6546	9-4
UA 5909	I-II	UA 6397	21-6	AUS 6547	9-4
UA 5910	1-3	UA 6401	12-1	UA 6553	6-1
UA 5917	13-3	AUS 6427	17-11	AUS/UA 6556	18-4
UA 5918	13-3	AUS 6428	17-1\|	UA 6567	7-4
UA 5918	13-6	AUS 6429	17-1\|	UA 6578	I-8
AUS 5922	1-23	UA 6430	12-3	UA 6585	21-2
UA 5928	13-5	UA 6432	1-14	UA 6596	20-6
UA 5928	13-7	AUS 6435	2-7	UA 6597	20-6
UA 5937	1-15	AUS 6444	1-13	UA 6598	20-6
UA 5938	1-3	AUS 6445	12-9	UA 6599	20-6
UA 5938	2-4	AUS 6446	12-9	UA 6608	14-4
UA 5939	1-16	AUS 6447	12-9	UA 6609	14-4
AUS 5940	1-16	AUS 6448	12-9	UA 661I	7-1
UA 5945	1-17	AUS 6449	12-9	AUS 6616	2-7
UA 5948	20-2	AUS 6450	12-9	AUS 6617	2-5

DIE No	PAGE
AUS 6620	2-7
AUS 6621	1-6
AUS 6622	2-7
AUS 6626	1-1.
AUS 6663	2-7
AUS 6665	$1-7$
AUS 6666	1-7
UA 6668	1-23
UA 6694	20-6
UA 6695	20-6
UA 6696	20-6
UA 6709	1-17
UA 6722	1-24
UA 6723	1-24
UA 6724	1-26
UA 6725	1-25
AUS 6733	I-5
UA 6748	1-23
UA 6749	1-23
UA 6750	1-23
UA 6758	12-3
UA 6759	1-18
UA 6770	5-4
UA 6771	5-4
UA 6784	7-6
UA 6821	1-23
AUS 6829	2-7
UA 6836	9-3
UA 6837	1-12
UA 6856	12-4
UA 6856	21-5
UA 6857	21-5
UA 6859	21-6
UA 6860	12-3
UA 6861	17-3
UA 6862	17-3
UA 6876	12-3
UA 6877	1-1
UA 6877	2-4
UA 6878	I-6
UA 6878	2-1
UA 6879	2-4
UA 6880	2-4
UA 6887	8-4
UA 6892	7-9
AUS 6907	1-6
UA 6920	1-15
UA 6929	I-6
UA 6933	1-9
UA 6934	1-20

DIE No	PAGE						
UA 6935	I-20	UA 7096	14-4	UA 7280	16-4	UA 7581	15-2
UA 6936	I-20	UA 7102	1-17	UA 7281	16-4	UA 7613	12-4
UA 6937	I-20	UA 7103	1-17	UA 7282	16-4	UA 7613	21-5
UA 6938	1-20	UA 7104	1-17	UA 7283	16-4	UA 7628	1-26
UA 6939	I-20	UA 7106	I-2\|	UA 7284	16-3	UA 7654	21-5
UA 6941	I-20	UA 7107	1-23	UA 7285	16-3	UA 7655	21-5
UA 6942	1-20	UA 7117	I-II	UA 7286	16-4	UA 7656	21-5
UA 6943	I-20	UA 7133	I-23	UA 7287	16-4	UA 7657	21-5
UA 6944	1-20	UA 7134	I-23	UA 7320	1-17	UA 7672	1-12
UA 6945	1-20	UA 7168	1-12	UA 7329	18-2	UA 7694	12-4
UA 6946	I-20	UA 7169	1-12	UA 7330	1-17	UA 7694	21-5
UA 6947	1-20	UA 7170	1-8	UA 7339	$1-18$	UA 7702	13-5
UA 6948	1-20	UA 7171	1-6	UA 7340	1-17	UA 7710	9-3
UA 6949	1-20	UA 7172	2-2	UA 7350	1-17	UA 7713	17-3
AUS/UA 6950	18-3	UA 7173	1-18	UA 7360	1-17	UA 7714	1-12
AUS/UA 6951	18-3	UA 7174	1-18	UA 7370	1-17	UA 7715	9-3
AUS/UA 6952	18-3	UA 7175	I-18	UA 7380	1-17	UA 7726	14-1
AUS/UA 6953	18-3	UA 7176	1-18	UA 7390	1-17	UA 7742	16-5
AUS/UA 6954	18-3	UA 7177	5-2	UA 7400	1-5	UA 7743	16-5
AUS/UA 6955	18-3	UA 7198	12-4	UA 7401	14-1	UA 7773	12-8
AUS/UA 6956	18-3	UA 7223	1-17	UA 7404	1-22	UA 7774	12-8
AUS/UA 6957	18-4	UA 7237	17-5	UA 7409	1-6	UA 7778	13-6
AUS/UA 6958	18-4	UA 7250	16-1	UA 7410	1-17	UA 7785	16-2
AUS/UA 6959	18-4	UA 7251	16-1	UA 7416	1-9	UA 7787	1-17
UA 6965	I-24	UA 7252	16-1	UA 7420	1-17	UA 7788	12-8
AUS/UA 6969	18-4	UA 7253	16-2	UA 7425	12-2	UA 7803	1-14
AUS/UA 6970	18-4	UA 7254	16-2	UA 7430	1-17	UA 7827	8-3
AUS/UA 6971	18-4	UA 7255	16-2	UA 7433	1-7	UA 7828	8-4
UA 6975	14-1	UA 7256	16-3	UA 7435	1-17	UA 7829	8-2
UA 7007	9-2	UA 7257	16-3	UA 7440	1-17	UA 7837	14-2
UA 7007	9-4	UA 7258	16-1	UA 7446	13-6	UA 7840	16-3
UA 7008	9-2	UA 7259	16-1	UA 7447	13-6	UA 7868	14-1
UA 7008	9-4	UA 7260	16-1	UA 7450	1-17	UA 7891	5-4
UA 7023	13-7	UA 7261	16-1	UA 7452	12-4	UA 7892	5-4
UA 7024	13-7	UA 7262	16-1	UA 7454	I-II	UA 7893	I-12
UA 7025	16-9	UA 7263	16-1	UA 7461	12-4	UA 7893	5-4
UA 7069	I-24	UA 7264	16-3	UA 7524	1-13	UA 7894	1-7
UA 7070	17-1	UA 7265	16-3	UA 7525	1-9	AUS 8005	1-15
UA 7071	17-1	UA 7266	16-3	UA 7558	15-1	AUS 8006	I-5
UA 7072	5-3	UA 7267	16-1	UA 7559	15-1	AUS 8007	1-9
UA 7085	21-2	UA 7268	16-1	UA 7560	15-1	AUS 8029	12-5
UA 7086	21-1	UA 7268	16-3	UA 7561	15-1	AUS 8030	1-9
UA 7087	21-1	UA 7269	16-1	UA 7562	15-1	AUS 8031	1-17
UA 7088	$21-1$	UA 7269	16-3	UA 7563	15-1	AUS 8049	I-II
UA 7089	21-1	UA 7270	16-3	UA 7564	15-I	AUS 8109	1-25
UA 7090	$21-1$	UA 7271	16-3	UA 7565	15-1	AUS 8109	20-7
UA 7091	21-1	UA 7272	16-3	UA 7566	15-2	AUS 8110	20-7
UA 7092	21-1	UA 7273	16-1	UA 7567	15-2	AUS 8111	20-7
UA 7092	21-6	UA 7274	16-2	UA 7568	15-2	AUS 8117	1-6
UA 7094	14-4	UA 7275	16-2	UA 7569	15-2	AUS 8163	1-14
UA 7095	14-4	UA 7276	16-4	UA 7570	15-2	AUS 8169	I-25
		UA 7277	16-4	UA 7571	15-2	AUS 8179	I-24
		UA 7278	16-4	UA 7572	15-2	AUS 8196	1-23
	IIAGRAMS ACTUAL SIZE UNLES THERWISE INDICATED. AGRAMS ARE SCHEMATIC ONL SPECIFICATION OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY	UA 7279	16-4	UA 7573	15-2	AUS 8214	21-4


```
EQUAL ANGLE
UNEQUAL ANGLE
CHANNEL
SQUARE HOLLOW
RECTANGULAR HOLLOW
EXTRUDED ROUND TUBE
DRAWN ROUNDTUBE
SOLID ROUND
SOLID SQUARE
SOLID HEXAGON
SOLID FREE MACHINING ROD
MACHINING FLAT BAR
FLAT BAR
TEE
HALF ROUND
COPE MOULD
ZED
I BEAM
TOP HAT
```


$R=$ Radiused corner

DIAGRAMS ACTUAL SIZE UNIESS
OTHERWISE NDICATED

DIE No.	A	B	C	D RI	R2	R3	kg/m	P
UA 2071	10.00		1.60				0.080	40
UA 1090	12.00		1.60				0.097	48
UA 1097	12.00		3.00				0.170	48
UA 1091	15.00		1.60				0.123	60
UA 1092	20.00		1.60				0.166	80
UA IIOI	20.00		3.00				0.299	80
UA 5505	22.00		1.60				0.183	88
UA 1094	25.00		1.60				0.210	100
UA II 03	25.00		3.00				0.382	100
UA III3	25.00		4.50				0.555	100
UA II 21	25.00		6.00				0.715	100
UA 1096	30.00		1.60				0.253	120
UA II 05	30.00		3.00				0.463	120
UA 1612	30.00		4.50				0.677	120
UA 1532	30.00		6.00				0.875	120
UA 2503	30.00		6.00	3.00	1.50	F	0.850	113
AUS 6496	32.00		1.60				0.269	128
UA 5854	32.00		3.00	0.50	0.50	0.50	0.494	127
AUS 8942	35.00		2.00				0.367	140
UA 2812	35.00		4.50				0.799	140
UA 6877	38.00		1.45				0.291	152
UA 1613	38.10		4.75				0.919	152
UA 1099	40.00		1.60				0.340	160
UA II 07	40.00		3.00				0.626	160
AUS 8447	40.00		4.00				0.821	160
UA III4	40.00		4.50				0.920	160
UA II 22	40.00		6.00				1.203	160
UA 2502	40.00		6.00	3.00	1.50	F	1.178	153
UA 1100	50.00		1.60				0.426	200
UA 2714	50.00		2.00				0.531	200
UA IIIO	50.00		3.00				0.785	200
UA 5279	50.00		4.00	0.50	0.50	0.50	1.036	199
UA III6	50.00		4.50				1.160	200
UA II 23	50.00		6.00				1.523	200
UA 3089	50.00		6.00	0.50	6.00	0.50	1.543	197
UA II29	50.00		9.00				2.219	200
AUS 8965	50.08		6.35		6.10		1.654	200
AUS 6495	60.00		3.00	0.50	0.50	0.50	0.947	239
UA 171]	60.00		6.00				1.853	240
UA II24	65.00		6.00				2.016	260
UA 2167	75.00		3.00				1.195	300
UA 1526	75.00		4.50				1.768	300
UA II 26	75.00		6.00				2.341	300
UA 1527	75.00		9.00				3.426	300
AUS 8953	76.20		6.35		7.62		2.537	301

DIE No.	A	B	C	D RI	R2	R3	$\mathbf{k g} / \mathbf{m}$	P
AUS 890I	76.20		9.52	0.50	7.60		3.705	301
UA I7I2	80.00		6.00				2.504	320
UA II27	90.00		6.00				2.829	360
UA III8	100.00		6.00				3.143	400
AUS IO58I	100.00		10.00	0.80	0.50	0.80	5.128	399
AUS 834I	150.00		6.00		6.00		4.783	597

$R=$ Radiused corner

$R=$ Radiused corner

DIAGRAMS ACTUAL SIZE UNLESS
DIAGRAMS ACTUAL SIZE
OTHERWISE INDICATED.

DIE No.	A	B	C	D RI	R2	R3	kg/m	P
UA 1533	19.05	9.53	1.59				0.116	57
UA 1731	20.00	12.00	1.60				0.131	64
UA 1102	22.00	12.00	3.00				0.252	68
UA 5504	22.00	18.00	1.60				0.166	80
UA 1534	22.23	9.53	1.59				0.130	64
UA 1093	25.00	12.00	1.60				0.153	74
UA 1535	25.00	12.00	3.00				0.276	74
UA 1857	25.00	19.00	1.20				0.138	88
UA 1732	25.00	20.00	1.60				0.187	90
UA 1529	25.00	20.00	3.00				0.340	90
UA 3339	30.00	12.00	4.50	0.50		0.50	0.455	83
UA 1530	30.00	20.00	1.60				0.209	100
UA I 104	30.00	20.00	3.00				0.382	100
UA 1095	30.00	25.00	1.60				0.231	110
UA 1531	30.00	25.00	2.50				0.354	110
UA 2943	32.00	20.00	1.60				0.218	104
UA 5910	32.00	25.00	3.00				0.437	114
UA 1524	38.00	25.00	3.00				0.488	126
UA 1651	40.00	12.00	1.60				0.218	104
UA 4556	40.00	12.00	3.00				0.397	104
UA 1098	40.00	20.00	1.60				0.253	120
UA 4493	40.00	20.00	3.00				0.461	120
UA 2295	40.00	20.00	4.00	0.50		0.50	0.604	119
UA 1068	40.00	25.00	1.60				0.275	130
UA I 106	40.00	25.00	3.00				0.504	130
UA 2599	42.00	25.00	2.00				0.351	134
UA 1926	50.00	20.00	1.60				0.295	140
UA I 108	50.00	20.00	3.00				0.544	140
UA 2848	50.00	25.00	1.60				0.318	150
UA I 109	50.00	25.00	3.00				0.585	150
UA 1974	50.00	30.00	1.60				0.340	160
UA III5	50.00	40.00	4.50				1.042	180
UA 2378	60.00	30.00	6.00				1.361	180
UA 3031	60.00	30.00	6.00	3.00	1.50	F	1.336	173
UA IIII	65.00	25.00	3.00				0.707	180
UA 2776	70.00	25.00	2.00				0.504	190
UA 5938	70.00	40.00	1.60				0.468	220
UA III2	75.00	25.00	3.00				0.788	200
UA 3785	75.00	25.00	6.00	0.50		0.50	1.522	199
UA 3504	75.00	30.00	4.50	0.50		0.50	1.220	209
UA 1525	75.00	50.00	3.00				0.988	250
UA 1117	75.00	50.00	4.50				1.469	250
UA II 25	75.00	50.00	6.00				1.935	250
AUS 8952	76.20	50.80	6.35		6.86		2.095	251
AUS 10440	80.00	20.00	3.00				0.785	199
UA 3100	85.00	20.00	3.00				0.826	210

DIE No.	A	B	C	D RI	R2	R3	kg/m	P	
UA 1614	90.00	60.00	6.00				2.341	300	\longleftarrow A
UA 1615	90.00	65.00	6.00				2.422	310	
UA 4688	100.00	25.00	2.00				0.664	250	
UA 3870	100.00	25.00	3.00				0.988	250	B
UA 2078	100.00	50.00	2.00				0.802	300	\downarrow R2
UA 2048	100.00	50.00	3.00				1.195	300	$\rightarrow \mathrm{C}$
UA 2805	100.00	50.00	4.50				1.774	300	
UA III9	100.00	50.00	6.00				2.333	300	
UA 3537	100.00	75.00	6.00	11.00	5.00	F	2.661	338	$\mathrm{R}=$ Radiused corner
UA 3861	100.00	75.00	8.00	0.50		0.50	3.606	347	
UA 1528	100.00	75.00	12.00				5.281	350	
UA 5335	115.00	75.00	9.00				4.398	380	
UA 2984	125.00	40.00	6.00				2.585	330	
UA 4589	130.00	54.00	2.00				0.983	368	
UA 6468	150.00	75.00	3.00	0.50	0.50	0.50	1.798	449	
UA II 20	150.00	75.00	6.00				3.548	450	
UA II 28	150.00	75.00	9.00				5.268	450	
AUS 10146	150.00	100.00	3.00	0.50	0.50	0.50	2.000	499	
AUS 8254	200.00	40.00	3.50				2.235	480	

$R=$ Radiused corner

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS.
OAD $=$ OVERAII DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
UA 3768	9.50	13.00	2.40	1.60				0.153	66
UA II30	10.00	10.00	1.60	1.60				0.116	57
UA 1374	10.00	15.00	1.60	1.50				0.151	76
UA 1713	12.00	12.00	1.60	1.60				0.142	68
UA II34	12.00	12.00	2.50	2.50				0.210	67
UA II3I	12.00	18.00	1.60	1.60				0.193	92
UA 4077	12.00	20.00	2.50	2.50				0.317	99
UA 1383	12.50	9.00	1.30	1.30				0.093	58
UA 1384	12.50	13.00	1.30	1.20				0.120	74
UA 1609	14.50	14.50	1.35	1.35				0.149	85
UA 2803	15.10	18.10	1.80	1.80	0.90		F	0.230	97
UA 1616	16.00	8.00	1.60	1.60				0.124	61
UA II32	16.00	11.00	1.60	1.60				0.151	72
UA 3614	16.20	16.20	1.60	1.60				0.196	94
UA II37	17.00	12.00	3.00	3.00				0.284	76
UA 1560	17.46	31.75	2.54	2.54				0.520	157
UA 3228	18.00	22.00	2.00	2.00	1.00			0.312	119
UA 1568	19.05	19.05	2.50	2.50				0.353	109
AUS 6733	20.00	16.00	1.60	1.60				0.210	100
UA 7400	20.00	18.20	1.50	1.50				0.216	109
AUS 8006	20.00	20.00	1.60	1.60				0.245	116
UA 1617	20.00	20.00	3.00	3.00				0.439	114
UA 1567	22.00	12.00	1.50	1.50				0.174	89
UA II38	22.00	22.00	3.00	3.00				0.487	126
UA 1561	22.23	12.70	1.588	1.588				0.190	92
UA 1806	24.00	13.00	1.20	1.20	1.70	0.50		0.152	96
UA 3482	25.00	12.00	3.00	3.00				0.348	92
UA 2947	25.00	20.00	1.60	1.60				0.268	126
UA II39	25.00	22.00	3.00	3.00				0.512	132
UA 1573	25.00	25.00	1.40	1.40				0.273	148
UA II33	25.00	25.00	1.60	1.60				0.310	146
UA II40	25.00	25.00	3.00	3.00				0.561	144
UA 5214	25.00	27.00	8.00	6.00	0.50		0.50	1.155	141
AUS 8943	25.00	40.00	3.00	3.00				0.801	203
UA 3227	25.00	50.00	2.00	2.00				0.653	246
UA 1654	25.00	50.00	3.00	3.00				0.967	244
UA 2959	29.80	50.00	2.20	2.20	0.50	0.50	0.50	0.747	254
UA 5756	30.00	15.00	2.00	2.00				0.302	115
UA 1141	30.00	25.00	3.00	3.00				0.601	154
UA 3226	30.00	50.00	2.00	2.00				0.680	256
UA 2244	32.00	20.00	3.00	3.00				0.534	137
AUS 5907	32.00	25.00	3.00	3.00				0.615	157
UA 5540	32.00	30.00	3.00	1.50				0.478	178
UA II42	40.00	12.00	3.00	3.00				0.471	122
UA 3615	40.00	16.50	1.50	1.50				0.265	143
UA II43	40.00	20.00	3.00	3.00				0.601	154

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
UA 1655	40.00	25.00	3.00	3.00				0.680	174
AUS 8944	40.00	40.00	3.00	3.00				0.923	233
AUS 8117	40.00	100.00	6.00	6.00	1.00	6.00	1.00	3.732	461
AUS 8223	41.00	26.00	1.50	1.50				0.364	183
AUS 6907	43.20	25.40	1.60	1.60			F	0.391	184
UA II44	45.00	25.00	3.00	3.00				0.723	184
UA 1043	47.00	17.00	1.50	1.40			F	0.307	158
UA II 45	50.00	25.00	3.00	3.00				0.764	194
UA 3061	50.00	25.00	6.00	6.00				1.425	188
AUS 6494	50.00	50.00	3.00	3.00	0.50	0.50	0.50	1.166	293
UA 1562	50.80	34.92	3.175	3.175				0.980	235
AUS 6621	53.00	25.00	1.50	1.50	0.50	0.50	0.50	0.404	202
UA 6878	55.00	25.00	1.45	1.45				0.399	207
UA 3839	55.00	25.00	3.00	2.00			F	0.680	203
UA I 148	57.00	30.00	4.00	4.00				1.181	226
UA 6929	60.00	25.00	3.00	3.00				0.842	213
UA 1563	63.50	31.75	4.763	4.763				1.510	244
UA 2169	70.00	30.00	2.50	2.50		1.00		0.848	254
UA 1671	75.00	25.00	3.00	3.00				0.964	244
UA 1862	75.00	40.00	3.00	3.00				1.207	304
UA II 47	75.00	40.00	4.50	4.50				1.774	301
UA 5251	75.00	40.00	6.00	6.00	0.50	0.50	0.50	2.316	297
UA II 49	75.00	40.00	6.00	8.00				2.693	298
UA 1565	75.00	50.00	4.50	4.50				2.017	341
UA 1656	75.00	50.00	6.00	6.00				2.650	338
UA 1564	76.20	19.05	3.18	3.18				0.930	222
UA 5303	76.20	38.10	6.35	7.92		7.62		2.731	285
UA 2948	80.00	25.00	3.00	3.00				1.008	254
AUS 5908	80.00	40.00	3.00	3.00				1.247	313
UA 3506	80.00	40.00	4.00	4.00				1.641	312
UA 3206	87.60	45.00	4.50	4.50				2.048	346
UA II 50	90.00	40.00	6.00	8.00				2.937	328
UA 7409	99.00	25.00	2.00	2.00	0.50	0.50	0.50	0.782	292
UA II35	100.00	25.00	3.00	3.00				1.170	294
UA 7171	100.00	38.00	3.00	3.00				1.376	345
UA 1136	100.00	40.00	3.00	3.00				1.414	354
UA 3130	100.00	50.00	3.00	3.00				1.571	394
UA II 46	100.00	50.00	4.50	4.50				2.320	391
UA 1566	100.00	50.00	6.00	6.00				3.056	388
UA 1652	100.00	50.00	6.00	8.00				3.534	388
UA 2464	100.00	50.00	6.00	8.00	8.00	6.00		3.488	376
UA 5723	101.60	50.80	6.35	7.90	0.50	0.50	0.50	3.638	392
AUS 8596	101.60	50.80	6.35	7.90	0.50	9.00	0.50	3.731	385
AUS 5901	102.00	100.00	5.00	5.00		3.00		3.952	591

$R=$ Radiused corner

$R=$ Radiused corner

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
AUS 8704	103.50	40.00	3.00	3.00	$I .00$		$I .00$	$I .434$	359
UA 7433	$I I I .00$	27.00	2.00	2.00				0.869	325
AUS 6458	$I 17.00$	25.40	2.50	1.50		1.25	F	0.976	328
UA 2804	120.00	65.00	12.00	12.00	0.50	0.50	0.50	7.349	475
UA 5302	125.00	50.00	4.00	8.00	2.00	2.00	2.00	3.328	436
UA 5058	125.00	50.00	6.00	8.00	0.50	0.50	0.50	3.925	437
AUS 8289	127.00	63.50	6.35	9.53	10.67		5.250	486	
AUS 6665	132.00	91.00	10.00	10.00	10.00	10.00	BEV	7.916	588
UA 5187	140.00	55.00	6.00	8.00	0.50	5.00	0.50	4.413	483
UA 7894	142.00	75.00	6.00	6.00	0.50	0.50	0.50	4.535	$57 I$
UA 1653	150.00	75.00	6.00	8.00				5.410	588
UA 5099	160.00	60.00	6.00	9.00	0.50	3.00	0.50	5.226	545
AUS 6666	180.00	102.00	10.00	10.00	10.00	10.00	BEV	9.806	728

$R=$ Radiused corner

DIE No.	A	B	C	D R I	R2	R3	kg/m	P
UA 4662	40.00	3.00		3.00	2.00		1.187	155
UA 2808	40.00	4.00					1.561	160
UA 6249	40.00	4.00		3.00			1.534	155
UA 2466	40.00	5.00		2.50			1.876	156
UA 1049	45.00	2.00					0.929	180
AUS 8007	50.00	1.60					0.836	200
UA I208	50.00	1.60		1.00			0.834	199
AUS 6462	50.00	1.60		6.30	4.70		0.796	190
UA 2949	50.00	2.00					1.037	200
AUS 8480	50.00	2.00		3.00	1.00		1.018	195
UA 3298	50.00	2.00		4.00	2.00		1.009	194
UA 5461	50.00	2.00		6.00	4.00		0.990	190
UA 1214	50.00	3.00					1.523	200
UA 4663	50.00	3.00		3.00	3.00		1.523	195
UA 3178	50.00	3.00		4.00	1.00		1.488	194
AUS 8457	50.00	3.00		5.00	2.00		1.474	192
UA 2809	50.00	4.00					1.994	200
AUS 8814	50.00	5.00		3.00			2.410	195
UA 3068	50.00	5.00		4.00	4.00		2.439	194
UA 5299	50.80	3.20		3.00	3.00		1.645	199
UA 3346	60.00	3.00					1.847	240
UA 4076	63.20	6.30		0.50	0.50		3.871	252
UA 4664	65.00	3.00		5.00	5.00		2.009	252
UA 1215	75.00	3.00					2.341	300
UA 4832	75.00	3.00		4.45	6.30		2.379	293
UA 7416	75.00	3.50		4.50	3.50		2.684	293
UA 1547	75.00	4.50					3.696	300
UA 6933	75.00	5.00		6.00	1.00		3.699	290
UA 4075	76.00	6.30		0.50	0.50		4.742	304
AUS 8030	76.20	6.35		15.90	9.55		4.416	278
AUS 8741	90.00	3.00		3.00	1.00		2.800	355
AUS 4483	100.00	3.00		10.00	7.00		3.025	383
UA 1213	100.00	3.00					3.143	400
UA 3350	100.00	3.50		5.00	1.50		3.595	392
UA 4627	100.00	4.00		4.60			4.099	393
UA 3825	100.00	4.50					4.641	400
UA 4302	100.00	5.00		0.50	0.50		5.130	400
UA 5721	100.00	6.00		12.00	6.00		5.841	380
UA 7525	150.00	3.00		3.00	1.60		4.748	595

$\begin{array}{llllllllll}\text { DIE No. A } & \text { B } & \text { C } & \text { D }\end{array}$

$R=$ Radiused corner

$R=$ Radiused corner

DIAGRAMS ACTUAL SIZE UNIESS

DIE No.	A	B	C D	RI	R2	R3	kg/m	P
UA 7454	30.00	10.00	1.60				0.318	80
UA 2696	30.00	20.00	1.40 v grooved	2.00	1.00		0.349	98
AUS 4088	35.00	25.00	1.40	3.00	1.60		0.418	115
AUS 6626	38.00	25.00	1.50	3.00	1.50		0.470	121
UA 498I	38.00	25.00	1.60	1.00			0.514	125
UA 6148	38.00	25.00	1.80	2.50	0.70		0.564	122
UA 3619	38.00	25.00	2.00	1.00			0.635	125
UA 5051	40.00	14.90	3.00	2.50	0.50		0.778	106
UA 1988	40.00	20.00	1.60				0.491	120
UA 5489	40.00	20.00	1.60	1.80			0.483	117
AUS 8905	40.00	20.00	2.00	2.00	0.50		0.596	117
UA 28II	40.00	20.00	3.00				0.875	120
UA 336I	40.00	25.00	1.60				0.534	130
UA 1979	40.00	25.00	2.00				0.659	130
AUS 5718	40.00	25.00	2.50	0.50	0.50		0.810	130
UA 2944	40.00	25.00	3.00				0.959	130
UA 2806	40.00	30.00	2.50				0.877	140
UA 6451	44.00	22.00	3.00	5.00	2.00		0.923	124
UA 5361	45.00	30.00	2.00	3.00	1.00		0.748	145
UA 4806	46.50	25.40	1.60	1.00	0.80		0.593	143
UA 4772	50.00	25.00	1.60	1.60			0.614	148
UA II97	50.00	25.00	2.50				0.948	150
UA 5909	50.00	25.00	2.50	3.00	0.50		0.925	145
UA 2945	50.00	25.00	3.00				1.122	150
UA 4635	50.00	25.00	3.00	4.00	1.00		1.083	144
UA 3067	50.00	25.00	5.00	4.00	4.00		1.762	144
UA 2654	50.00	30.00	2.00				0.824	160
UA 2461	50.00	38.00	2.00	3.00	1.00		0.889	171
UA 2767	50.00	40.00	2.00	6.00	6.40		0.940	170
UA 1200	50.00	40.00	3.00				1.361	180
UA 472I	50.00	40.00	3.00	10.00	7.00		1.243	163
UA 2810	50.00	40.00	4.00				1.771	180
AUS 10004	51.20	11.50	1.50	2.00			0.474	122
UA 3066	60.00	25.00	5.00	4.00	4.00		2.033	164
UA 3069	60.00	35.00	5.00	4.00	4.00		2.295	184
UA 3344	60.00	40.00	3.00				1.523	200
AUS 10085	62.00	50.00	1.60	0.50			0.940	224
AUS 6506	65.00	16.00	1.20	3.00	1.80		0.496	157
AUS 6507	65.00	16.00	1.40	3.00	1.60		0.576	157
UA 3786	65.00	30.00	2.50				1.215	190
UA 5169	65.00	50.00	2.50	4.00	1.50		1.453	224
UA 2486	65.00	50.00	3.00	0.50	1.00		1.770	230
AUS 8049	70.00	30.00	3.00	1.40			1.519	198
UA 4849	75.00	25.00	1.60				0.836	200
UA 7177	75.00	25.00	2.20	1.00			1.133	199

| DIE No. | A | B | C | D | RI | R2 | R3 | kg/m |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | P

$R=$ Radiused corner

$R=$ Radiused corner

| DIE No. | A | B | C | D | RI | R2 | R3 | kg/m |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | P

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS
SPECFICATION DRAWING
OAD $=$ OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY
© Uulrichaluminum coltd

DIE No.	A	B	C	D RI	R2	R3	kg/m	P
UA 1924	6.35	1.42					0.059	20
UA 1542	7.94	1.42					0.079	25
UA 1966	9.53	0.90					0.066	30
UA 1737	9.53	1.20					0.085	30
UA 1229	9.53	1.45					0.099	30
UA 1927	9.53	1.60					0.108	30
UA 2028	12.70	0.90					0.090	40
UA 3464	12.70	1.20					0.115	40
UA 1230	12.70	1.45					0.138	40
UA 4153	12.70	2.20					0.196	40
UA 5105	15.50	1.42					0.170	49
UA 2815	15.85	1.50					0.183	50
UA 3141	15.88	1.22					0.152	50
UA 1231	15.90	1.45					0.178	50
UA 2001	16.00	1.20					0.151	51
UA 2722	16.00	1.60					0.196	51
UA 1657	16.00	2.50					0.287	51
UA 1916	19.05	1.22					0.184	60
AUS 8163	19.05	1.60					0.237	60
UA 1928	19.05	2.00					0.289	60
UA 1232	19.10	1.45					0.218	60
UA 1225	20.00	1.20					0.192	63
UA 1968	20.00	1.60					0.251	63
UA 7803	20.00	2.00					0.305	63
UA 4121	20.00	3.00					0.433	63
UA 3538	21.00	3.50					0.520	66
UA 2740	21.00	4.00					0.579	66
UA 1226	22.00	1.20					0.213	70
UA 1233	22.20	1.45					0.256	70
UA 6432	22.50	2.00					0.348	71
UA 2783	24.00	1.50					0.287	76
UA 1227	25.00	1.20					0.243	79
UA 1969	25.00	1.60					0.318	79
UA 1245	25.00	2.00					0.392	79
UA 1248	25.00	3.00					0.562	79
UA 2027	25.40	1.20					0.246	80
UA 1234	25.40	1.45					0.296	80
UA 3942	25.40	2.00					0.397	80
UA 5840	25.40	3.00					0.570	80
UA 4870	26.50	1.40					0.298	84
UA 1235	28.58	1.45					0.335	90
UA 2220	29.00	1.70					0.395	92
UA 1243	30.00	1.60					0.387	95
UA 1249	30.00	3.00					0.690	95
UA 3453	31.00	3.00					0.713	98

DIAGRAMS ACTUAL SIZE UNLESS

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
UA 1769	50.80	2.64						1.078	160
UA 4544	52.00	14.00						4.513	164
UA 5171	57.20	2.00						0.936	180
UA 4579	57.64	1.85						0.875	182
AUS 3569	60.00	2.00						0.984	189
AUS 8909	60.00	3.00						1.450	189
UA 5939	60.00	4.00						1.900	189
AUS 10474	60.00	4.50						2.118	189
AUS 5940	60.00	5.00						2.333	189
UA 4580	60.94	1.85						0.927	192
UA 4478	61.50	13.75						5.569	300
UA 5172	63.50	2.00						1.043	200
AUS 5199	63.50	3.00						1.540	200
AUS 6523	63.50	3.25						1.661	200
UA 2666	63.50	4.50						2.260	200
UA 1538	63.50	6.35						3.078	200
UA 5180	63.50	10.00						4.538	200
UA 1244	65.00	1.60						0.864	205
UA 1252	65.00	3.00						1.584	205
UA 4708	65.00	3.50						1.826	205
UA 1073	65.00	5.00						2.554	205
UA 1228	75.00	1.20						0.754	236
UA 1658	75.00	1.60						1.000	236
UA 1253	75.00	3.00						1.839	236
UA 2665	75.00	4.50						2.701	236
UA 4826	75.00	6.00						3.512	236
AUS 5246	75.60	1.70						1.066	238
AUS 5200	75.80	2.90						1.793	239
UA 5170	76.20	2.00						1.259	240
AUS 5989	76.20	2.55						1.593	240
AUS 8896	76.20	3.50						2.158	240
AUS 6522	76.20	4.75						2.879	240
UA 4727	76.20	8.10						4.679	240
UA 2772	80.00	2.00						1.328	252
AUS 6492	80.00	3.00						1.959	252
UA 5165	80.00	8.00						4.886	252
UA 6292	80.00	16.00						8.686	252
AUS 8465	80.30	2.30						1.522	253
UA 1680	86.00	3.00						2.112	271
UA 5818	86.20	4.50						3.119	271
UA 1254	90.00	3.00						2.222	283
UA 1540	100.00	1.60						1.340	315
UA 3216	100.00	2.00						1.663	315
UA 1247	100.00	3.00						2.477	315
UA 1255	100.00	6.00						4.784	315

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
UA 5064	100.00	12.00						8.957	315
UA 2245	100.00	24.50						15.362	315
UA 3723	101.60	1.20						1.022	320
UA 6709	101.60	2.00						1.690	320
AUS 6524	101.60	6.35						5.130	320
UA 4780	114.30	6.35						5.814	360
UA 1659	125.00	3.00						3.116	393
UA 3724	127.00	1.60						1.702	399
AUS 5268	127.00	4.00						4.173	399
UA 5444	127.00	8.00						8.075	399
UA 5945	127.00	19.05						17.443	399
AUS 8031	127.30	4.10						4.183	400
UA 3722	150.00	3.20						3.985	472
UA 6084	152.40	5.00						6.251	479
UA 7223	152.40	15.87						18.384	479
UA 4789	162.00	4.00						5.361	509
UA 7102	177.80	6.35						9.235	559
UA 7103	177.80	25.40						32.835	559
UA 7104	203.20	3.18						5.395	639
UA 3822	203.20	6.35						10.603	639
UA 7787	250.00	6.00						12.418	786

DRAWN ROUND TUBE

UA 7320	9.53	1.42	0.098	30
UA 7330	12.70	1.42	0.136	40
UA 7340	15.88	1.42	0.174	50
UA 7350	19.05	1.42	0.212	60
UA 7360	22.23	1.42	0.251	70
UA 7370	25.40	1.42	0.289	80
UA 7380	28.58	1.42	0.327	90
UA 7390	31.75	1.42	0.365	100
UA 7410	34.93	1.42	0.404	110
UA 7420	38.10	1.42	0.442	120
UA 7430	41.28	1.42	0.480	130
UA 7435	44.45	1.42	0.518	140
UA 7440	47.63	1.42	0.557	150
UA 7450	50.80	1.42	0.595	160

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P	
SOLID ROUND										
UA 1271	4.76							0.048	15	\longleftarrow A
UA 1270	6.35							0.086	20	
UA 1269	7.94							0.134	25	
UA 1258	9.50							0.192	30	
AUS 10614	12.00							0.305	38	
UA 1259	12.70							0.343	40	
UA 3321	14.50							0.446	46	
UA 1260	15.88							0.535	50	
UA 3939	18.00							0.687	57	
UA 1261	19.05							0.772	60	Weight of Billet
UA 2038	20.00							0.848	63	Billet, 178 mm diameter
AUS 8867	25.00							1.325	79	0.0
UA 1262	25.40							1.373	80	Billet, 202 mm diameter
UA 6759	28.00							1.663	88	$1 \mathrm{~mm}=0.0875 \mathrm{Kg}$
AUS 10467	28.58							1.732	90	
UA 1263	31.75							2.146	100	
UA 1264	38.10							3.090	120	
UA 2995	44.40							4.196	140	
AUS 8474	50.00							5.301	158	
UA 1265	50.80							5.493	160	
UA 1266	63.50							8.582	200	
UA 1267	76.20							12.359	240	
UA 1868	88.90							16.759	280	
UA 1257	100.00							21.284	315	
UA 1268	101.60							21.971	320	
UA 7173	127.00							34.203	399	
UA 7174	152.40							49.252	479	
UA 7175	177.80							67.037	559	
UA 7176	203.20							87.559	639	
UA 7339	228.60							110.817	719	

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
SOLID SQUARE									
UA 1279	6.35							0.109	25
UA 1272	9.50							0.244	38
UA 1273	12.70							0.437	51
UA 1274	19.05							0.983	76
UA 1275	25.40							1.748	102
UA 1276	31.75							2.732	127
UA 1277	38.10							3.934	152
UA 1278	50.80							6.993	203

SOLID HEXAGON

UA 1607 II.II
0.290

39

Free Machining Rod
In lengths up to 3600 mm
diagrams actual size unless
DIAGRAMS ACTUAL SIZE

MACHINING FLAT BAR 606I-T65II

DIE No.	A	B	C	D RI	R2	R3	kg/m	P	
UA 6934	50.80	19.05		0.40			2.613	139	
UA 6935	50.80	25.40		0.40			3.483	152	$-\left.A \longrightarrow\right\|_{\downarrow}$
UA 6936	63.50	31.75		0.40			5.443	190	$\frac{\downarrow}{B}$
UA 6937	76.20	38.10		0.40			7.838	228	
UA 6939	76.20	50.80		0.40			10.451	254	
UA 6943	76.20	63.50		0.40			13.064	279	
UA 6938	101.60	38.10		0.40			10.451	279	
UA 6941	101.60	50.80		0.40			13.935	305	$\mathrm{R}=$ Radiused corner
UA 6944	101.60	76.20		0.40			20.903	355	Machining Flat Bar
UA 6945	114.30	76.20		0.40			23.516	381	In lengths up to 3658mm
UA 6946	127.00	76.20		0.40			26.129	406	
UA 6948	127.00	101.60		0.40			34.838	457	
UA 6942	152.40	50.80		0.40			20.903	406	
UA 6947	152.40	76.20		0.40			31.354	457	
UA 6949	152.40	101.60		0.40			41.806	508	

[^0]Ullrichaluminum co lt

$R=$ Radiused corner

DIAGRAMS ACTUAL SIZE UNIESS OTHERWISE INDICATED.

DIE No.	A	B	C	D RI	R2 R3	kg/m	P
UA II65	10.00	2.30				0.062	25
UA 7106	11.70	2.20				0.069	28
UA 2029	12.00	1.60				0.052	27
UA I I 70	12.00	3.00				0.097	30
UA 1921	12.00	3.00		F		0.092	28
UA II79	12.00	4.50				0.146	33
UA 1551	12.00	6.00				0.195	36
UA II7I	16.00	3.00				0.130	38
UA 1004	19.00	4.50		F		0.220	44
UA 1508	19.05	2.64		1.32		0.132	42
UA II5I	20.00	1.60				0.087	43
UA I I 72	20.00	3.00				0.162	46
UA 2626	20.00	4.00				0.217	48
UA I 180	20.00	4.50				0.244	49
UA II 88	20.00	6.00				0.324	52
UA I I 52	25.00	1.60				0.108	53
UA 1173	25.00	3.00				0.203	56
AUS 8577	25.00	4.00				0.270	58
UA 1181	25.00	4.50				0.305	59
UA 3153	25.00	5.00				0.337	60
UA II89	25.00	6.00				0.406	62
UA II 53	25.00	10.00				0.677	70
UA 5790	25.00	10.00		F		0.617	62
UA II 59	25.00	12.00				0.813	74
UA 2085	25.00	15.00		F		0.882	68
UA II74	30.00	3.00				0.244	66
UA 2684	30.00	3.00		F		0.239	64
UA 1552	30.00	4.50				0.364	69
UA I 190	30.00	6.00				0.488	72
UA 2296	30.00	15.00		1.00		1.213	89
UA 1558	31.75	4.50				0.387	72
UA 2937	32.00	3.00				0.268	70
AUS 2939	32.00	6.00				0.520	76
UA 4225	36.00	6.00				0.583	84
UA 3154	38.00	4.50				0.461	85
UA 1175	40.00	3.00				0.325	86
AUS 6493	40.00	4.00		0.50		0.431	88
UA I 182	40.00	4.50				0.488	89
UA II91	40.00	6.00				0.650	92
UA II 54	40.00	10.00				1.084	100
UA I 160	40.00	12.00				1.301	104
UA II 64	40.00	16.00				1.734	112
UA II76	45.00	3.00				0.366	96
UA 1553	45.00	6.00				0.731	102
AUS 1042I	50.00	2.00				0.270	104

$R=$ Radiused corner

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
UA 7107	80.00	15.00			0.50			3.239	190
UA 6750	80.00	16.00			2.00			3.447	189
UA 6748	80.00	20.00			2.00			4.311	197
UA 6749	80.00	25.00			2.00			5.391	207
UA 2724	95.00	19.10						4.917	228
UA 2009	100.00	2.50						0.675	205
UA II 69	100.00	3.00						0.810	206
UA 3369	100.00	4.00						1.079	208
UA I 186	100.00	6.00						1.620	212
UA 6821	100.00	8.00			0.50			2.159	216
UA 1555	100.00	10.00						2.710	220
UA 1157	100.00	12.00						3.252	224
UA 6168	100.00	15.00			0.50			4.049	230
AUS 8196	100.00	16.00						4.320	232
UA 1166	100.00	25.00						6.775	250
UA 1185	100.00	50.00						13.550	300
UA 5462	115.00	6.00						1.863	242
UA I 187	125.00	6.00						2.032	262
UA 2733	125.00	10.00						3.387	270
UA 1556	125.00	12.00						4.065	274
UA 6169	125.00	15.00			0.50			5.092	280
UA 2249	127.00	38.10						13.064	330
UA 5282	130.00	12.00			0.50			4.211	284
AUS 5922	136.00	5.00			F			1.822	278
AUS 10048	140.00	10.00			0.50			3.779	300
UA 3479	150.00	3.00						1.215	306
UA 6668	150.00	5.00			0.50			2.024	310
UA 1557	150.00	6.00						2.439	312
UA 7134	150.00	8.00			0.50			3.239	316
UA 7133	150.00	10.00			0.50			4.049	320
UA II58	150.00	12.00						4.878	324
UA 2941	160.00	6.00						2.592	332
UA 3408	160.00	10.00			0.50			4.319	340
AUS 8826	160.00	12.00			0.50			5.183	344
AUS 1023I	200.00	6.00			0.50			3.239	412
UA 4430	200.00	10.00						5.399	420

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P
UA 1216	20.00	20.00	1.60	1.60				0.167	80
UA 1217	20.00	20.00	3.00	3.00				0.301	80
UA 1543	22.22	12.70	3.17	3.17				0.272	70
UA 1987	25.00	25.00	1.60	1.60				0.210	100
UA 1218	25.00	25.00	3.00	3.00				0.382	100
UA 1967	25.00	38.00	1.20	1.20				0.201	126
UA 4224	28.00	50.00	4.00	4.00		3.00		0.809	153
UA 2830	30.00	22.00	2.00	2.00				0.271	104
UA 5278	35.00	50.00	3.00	3.00		5.00		0.692	165
UA 1544	38.10	19.05	1.59	1.59				0.238	115
AUS 8179	40.00	7.50	1.50	1.50				0.186	95
UA 1219	40.00	40.00	3.00	3.00				0.626	160
UA 1545	40.00	40.00	4.50	4.50				0.917	160
UA 3071	40.00	40.00	6.00	6.00				1.198	160
UA 3003	40.00	50.00	6.00	6.00	2.00	6.00	2.00	1.394	170
UA 1344	44.50	25.50	2.50	2.50	F		F	0.452	137
UA 4485	45.00	100.00	8.00	4.00		4.00		1.983	286
AUS 8927	50.00	7.50	1.60	1.60				0.241	115
UA 3059	50.00	50.00	2.00	2.00				0.529	200
UA 1958	50.00	50.00	3.00	3.00				0.788	199
UA 6260	50.00	50.00	4.00	4.00		4.00	0.50	1.054	196
UA 1220	50.00	50.00	6.00	6.00				1.528	200
UA 7069	50.00	60.00	5.10	5.00		3.00		1.432	215
UA 5277	50.00	60.00	6.00	4.00		5.00		1.421	215
UA 3004	50.00	75.00	6.00	6.00	2.00	6.00	2.00	1.956	240
UA 6723	50.00	75.00	8.00	8.00	1.00	5.00	1.00	2.553	244
UA 4517	50.00	100.00	6.00	6.00				2.332	299
UA 6173	50.00	130.00	6.00	6.00	1.00	4.00	1.00	2.834	354
UA 3005	50.00	150.00	8.00	8.00	2.00	6.00	2.00	4.175	390
UA 4998	60.00	60.00	6.00	6.00				1.846	239
UA 2787	60.00	60.00	6.00	6.00		5.00		1.882	235
UA 6722	60.00	60.00	8.00	8.00	1.00	5.00	1.00	2.445	234
UA 6965	60.00	100.00	6.00	6.00	0.50	3.00	0.50	2.504	317
UA 5238	65.00	100.00	8.00	8.00	0.50	4.00	0.50	3.409	326
UA 2437	70.00	40.00	4.00	4.00	3.50	1.00	1.00	1.135	215
UA 1714	75.00	75.00	4.50	4.50		2.00		1.772	299
UA 5844	80.00	139.00	8.00	5.00		6.00		3.537	432
UA 4234	100.00	100.00	4.76	4.76				2.509	399
AUS 5843	100.00	180.00	10.00	6.00		10.00		5.569	551
AUS 10300	60.00	70.00	10.00	10.00	0.50	6.00	0.50	3.281	254

$R=$ Radiused corner

```
Please Note:
REFERTO SECTION I7-I FOR ADDITIONAL SPECIALISED TEES
```


| DIE No. | A | B | C | D | $R 1$ | $R 2$ | $R 3$ | $k g / m$ | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COPE MOULD

UA I50I	18.50	18.50	0.181	68
UA I500	23.80	8.26	0.149	59
UA I499	34.43	14.53	0.346	88

ZED

AUS $\mathbf{8 1 6 9}$	11.50	21.50	36.00	1.50 в Leg 2.00		0.294	134
UA 1221	16.00	20.00	25.00	1.60		0.251	119
UA 2983	18.50	20.00	15.00	1.50		0.267	104
UA 6725	19.00	19.00	25.40	2.00	3.00	0.327	118
UA 1222	20.00	20.00	25.00	3.00		0.480	124
AUS 8109	20.00	21.60	25.50	1.60		0.276	131
AUS 10135	21.00	31.75	40.00	2.00		0.479	181
UA 1639	25.00	19.00	17.00	1.60		0.250	118
UA 1223	25.00	25.00	30.00	3.00		0.602	154
UA 1487	31.80	31.80	152.40	3.00		1.701	426
UA 5813	40.00	48.00	55.00	6.00		2.122	273

I BEAM								
UA II96	40.00	40.00	3.00	3.00			0.927	234
UA II95	45.00	50.00	2.50	2.50			0.915	275
UA I493	69.90	102.00	3.43	$5.54+2.96$ LP	3.00		3.083	490
AUS I00 I6	80.00	117.90	6.00	8.00	1.00	2.50	5.117	537
AUS 88I7	100.00	107.00	6.00	6.00	6.00	4.861	590	
UA 4389	100.00	150.00	7.10	9.50	11.10		7.926	665

$R=$ Radiused corner

DIE No.	A	B	C	D	RI	R2	R3	kg/m	P		
TOP HAT											
UA 1280	50.00	25.00	16.00	1.50				0.321	160	$R \\| \leftarrow B \rightarrow$	
UA 1281	57.00	24.00	28.00	2.30				0.675	221	\uparrow	
UA 6724	60.00	25.00	22.00	2.40				0.642	202	R2 $\quad \mathrm{D} \rightarrow \leftarrow \mathrm{C}$	
UA 1569	60.00	30.00	30.00	2.50				0.776	234		
UA 5047	63.50	31.75	31.75	3.00	3.00	3.00		0.990	240		
UA 1283	65.00	30.00	30.00	2.50				0.810	244	$\square \longrightarrow$	
UA 2510	68.00	38.00	57.00	3.00				1.425	357		
UA 1620	70.00	38.00	45.00	3.00				1.247	314	$\mathrm{R}=$ Radiused corner	
UA 1621	75.00	32.00	45.00	3.00				1.288	324		
UA 3575	100.00	60.00	29.00	5.00	2.00	2.00		1.997	299		
UA 3813	110.00	58.00	50.00	4.00				2.181	411		
UA 1284	110.00	66.00	28.00	3.00				1.300	325		
UA 1282	125.00	62.00	30.00	3.00				1.455	363		
UA 7628	134.00	60.00	100.00	3.00	0.50	0.50		2.656	660		

DIE No

UA 1474
JOINTER
UA 1502 CHANNEL
UA 1503 CHANNEL
UA 1504 CHANNEL
UA 1505 CHANNEL
UA 1506 CHANNEL
UA 1512 COVING
UA 1517 INTERNALANGLE
UA 1518 EXTERNALANGLE
UA 1523 CHANNEL
UA 1915 SCOTIA
UA 1948 INTERNAL ANGLE
UA 1993 SLIDING DOOR CHANNEL
UA 1994 SLIDING DOOR CHANNEL
UA 2166 CHANNEL CAP
UA 249I COVING
UA 2526 CHANNEL
UA 2527 EXTERNALANGLE
UA 2563 COVING
UA 2622 CHANNEL
UA 2675 EXTERNAL ANGLE
UA 2728 CHANNEL
UA 2799 CHANNEL
UA 2800 CHANNEL
UA 2801 CHANNEL
UA 2895 CHANNEL
UA $3204 \quad 100 \mathrm{~mm}$ DOOR REBATED
UA 3205 DOOR CHANNEL
UA $3229 \quad 50 \mathrm{~mm}$ DOOR REBATED
UA $3230 \quad 75 \mathrm{~mm}$ DOOR REBATED
UA 3714 DOOR CHANNEL
UA 3812 CHANNEL
UA 3830 EXTERNAL ANGLE
UA 3836 CHANNEL
UA 3837 CHANNEL
UA 3838 CHANNEL
UA 4254 CHANNEL
UA 4255 CHANNEL
AUS 5895 CHANNEL
AUS 5896 CHANNEL
AUS 5897 CHANNEL
AUS 5898 CHANNEL
AUS 5899 COVING
AUS 5900 CHANNEL
UA 5938 ANGLE
AUS 6435 COLD ROOM
AUS 6457 RUB RAIL
AUS 6460 CHANNEL
AUS 6616 PREFAB INT CORNER
AUS 6617 CHANNEL
AUS 6620 PREFAB DOOR CHANNEL
AUS 6622 PREFAB DOOR STOP
AUS 6663 PREFAB DOOR FRAME
AUS 6829 COLD ROOM

DIE No DESCRIPTION

UA 6877 ANGLE
UA 6878 CHANNEL
UA 6879 DOOR FRAME
UA 6880 DOOR FRAME
UA 7172 COVING
AUS 8940 COVING
AUS 8974 ANGLE

UA 1502
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.54 \mathrm{I} \quad$ P 253
OAD $53.2 \times 45 \times 1.6$
UA 1503
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.650$ P 303
OAD $78.2 \times 45 \times 1.6$
UA 1504
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.758$ P 353
OAD $103.2 \times 45 \times 1.6$
UA 2622
CHANNEL
kg/m 0.769 P 358
OAD $105.7 \times 45 \times 1.6$
UA 2799
CHANNEL
kg/m 0.509 P 254
OAD $54 \times 45 \times 1.5$
UA 2800
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.610$ P 304
OAD $79 \times 45 \times 1.5$

UA 2801

CHANNEL
$\mathrm{kg} / \mathrm{m} 0.712$ P 354
OAD $104 \times 45 \times 1.5$
UA 4254
CHANNEL
kg/m 0.545 P 206
OAD $55 \times 25 \times 2.0$
UA 4255
CHANNEL
$\mathrm{kg} / \mathrm{m} 1.295$ P 326
OAD $106 \times 30 \times 3.0$
UA 6878
CHANNEL
kg/m 0.399 P 207
OAD $55 \times 25 \times 1.45$

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS SPECIFICATION DRAWINGS. OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 2622

UA 1504

UA 4255

UA 2801

UA 1518

UA I474
JOINTER
$\mathrm{kg} / \mathrm{m} 0.235 \quad \mathrm{P} 142$
OAD 35×10.5
UA 1512
COVING
kg/m 1.119 P 312
OAD 93×93
UA 1517
INTERNAL ANGLE $\mathrm{kg} / \mathrm{m} 0.423$ P 197
OAD 50×50
UA 1518
EXTERNAL ANGLE
kg/m 0.431 P 199
OAD 50×50

UA 1915

SCOTIA
kg/m 0.643 P 266
OAD 60.5×48
UA 1948
INTERNAL ANGLE
$\mathrm{kg} / \mathrm{m} 0.314$ P 155
OAD 40×40

UA 2491

COVING
kg/m 0.940 P 344
OAD 91.5×91.5

UA 2527

EXTERNAL ANGLE $\mathrm{kg} / \mathrm{m} 0.326 \mathrm{P} 161$
OAD 40×40

UA 2563

COVING
$\mathrm{kg} / \mathrm{m} 0.274 \quad$ P 127
OAD 37.95×37.95
UA 2675
EXTERNAL ANGLE
$\mathrm{kg} / \mathrm{m} 0.510 \quad$ P 239
OAD 70×50

UA 3830

EXTERNAL ANGLE
kg/m 0.516 P 220
OAD 70×40
UA 7172
COVING
kg/m 0.804 P 259
OAD 73.5×73.5

[^1]\qquad

UA 1505

CHANNEL
$\mathrm{kg} / \mathrm{m} 0.411 \quad$ P 192
OAD $48.2 \times 25 \times 1.6$
UA 1506
CHANNEL
kg/m 1.164 P 331
OAD 118.4×25
UA 1523
CHANNEL
kg/m 1.549 P 429
OAD 168×25
UA 1993
SLIDING DOOR CHANNEL kg/m 2.507 P 452
OAD 97×50

UA 1994

SLIDING DOOR CHANNEL kg/m 1.123 P 340
OAD 75×55.3
UA 2526
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.938$ P 279
OAD 92.2×25.4
UA 2728
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.616$ P 203
OAD 54.8×25

UA 3714
DOOR CHANNEL
$\mathrm{kg} / \mathrm{m} 1.045 \quad$ P 314
OAD 110×25

UA 1523

UA 3714

UA 1506
4 UA 2526

UA 1505

UA 1994

UA 1993

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS
SPECIFICATION DRAWINGS.
OAD = OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY
ULLRICH

UA 3836

UA 5938

INFILLS SOLD SEPARATELY

UA 2166
CHANNEL CAP
kg/m 0.467 P 229
OAD 46.5×40

UA 2895
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.495 \quad \mathrm{P} 215$
OAD 53×28

UA 3836
CHANNEL
kg/m 1.600 P 430
OAD 168.5×25
UA 3837
CHANNEL
kg/m l.191 P 330
OAD 118.7×25
UA 3838
CHANNEL
kg/m 0.99| P 280
OAD 93.4×25

UA 5938

ANGLE
kg/m 0.468 P 220
OAD 70×40

UA 6877

ANGLE
$\mathrm{kg} / \mathrm{m} 0.29|\quad \mathrm{P}| 52$
OAD 38×38

UA 6879

DOOR FRAME
kg/m 0.882 P 298
OAD 66×47.3 Infill 40404

UA 6880

DOOR FRAME
kg/m 1.002 P 324
OAD 80.3×47.3 Infill 40404

UA 3812

CHANNEL
kg/m 0.36। P 205
OAD 54×24.9

AUS 5895
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.755 \quad$ P 354
OAD 103×38

AUS 5896
CHANNEL
kg/m 0.647 P 304
OAD 78×38

AUS 5897
CHANNEL
kg/m 0.976 P 277
OAD 92.1×25.4

AUS 5898
CHANNEL
kg/m 1.634 P 430
OAD 168.3×25.4
AUS 5899
COVING
$\mathrm{kg} / \mathrm{m} 0.255 \quad \mathrm{P} 121$ OAD 35×35

AUS 5900
CHANNEL
kg/m 0.325 P 204
OAD 53.2×25
AUS 6457
RUB RAIL
$\mathrm{kg} / \mathrm{m} 0.692$ P 320
OAD 112×18.6

AUS 6460
CHANNEL
kg/m 0.506 P 229
OAD 55.8×30

AUS 6617
CHANNEL
$\mathrm{kg} / \mathrm{m} 0.538 \quad$ P 252
OAD 78.2×25

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. dIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS.
OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

AUS 5898

AUS 6457

UA 3205

UA 3229

50mm DOOR REBATED kg/m 0.85। P 276 OAD 63×52 Infill 910।

UA 3230

75 mm DOOR REBATED
kg/m 1.240 P 394
OAD 80.8×52 Infill $9|0|$

UA 3204

AUS 6616
PREFAB INT CORNER
$\mathrm{kg} / \mathrm{m} 0.276$ P 160
OAD 41.85×41.85
AUS 6620
PREFAB DOOR CHANNEL
$\mathrm{kg} / \mathrm{m} 0.440 \quad$ P 220
OAD 53×38
AUS 6622
PREFAB DOOR STOP
$\mathrm{kg} / \mathrm{m} 0.552$ P 261
OAD 53.2×47.5
AUS 6663
PREFAB DOOR FRAME kg/m 0.537 P 25 I
OAD 53.5×37
AUS 6435
COLD ROOM
kg/m 1.446 P 422
OAD 112.3×70
AUS 6829
COLD ROOM
kg/m 1.607 P 253
OAD 90×16
AUS 8940
COVING
$\mathrm{kg} / \mathrm{m} 0.456 \quad$ P 183
OAD 50×50
AUS 8974
ANGLE
$\mathrm{kg} / \mathrm{m} 0.316 \quad$ P 160
OAD 40×40

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED. OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC AIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS SPECIFICATION DRAWINGS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

DIE No
 DESCRIPTION

UA 1357 INDUSTRIAL STEP
UA 1426 HERZIMTHRESHOLD
UA 1488 THRESHOLD
UA 1489 THRESHOLD
UA 1490 THRESHOLD
UA 2580 THRESHOLD
UA 2955 THRESHOLD

UA 1357
INDUSTRIAL STEP kg/m I. 448 P 286
OAD 96×22

UA 1426
HERZIMTHRESHOLD
kg/m 0.819 P 215
OAD 89.5×9 Infill 12

UA 1488

THRESHOLD
$\mathrm{kg} / \mathrm{m} 1.888 \quad$ P 370
OAD 169×14.68
UA 1489
THRESHOLD
kg/m 1.022 P 229
OAD 101.6×13.08

UA 1490

THRESHOLD
$\mathrm{kg} / \mathrm{m} 0.892$ P 18 l
OAD 76.2×12.7

UA 2580

THRESHOLD
$\mathrm{kg} / \mathrm{m} 0.702 \quad$ P 146
OAD 60×12.7

UA 2955
THRESHOLD
$\mathrm{kg} / \mathrm{m} 0.973$ P 192
OAD 76.2×18.7

UA 2580

UA 1490

UA 2955

UA 1489

UA 1357

UA 1426

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED.

DIE No

DESCRIPTION

UA 1432 NOSING Serrated
UA 1433 NOSING Serrated
UA 1434 NOSING Serrated
UA 1435 ANGLE Serrated
UA 1436 NOSING Castellated
UA 1437 CARPET EDGE
UA 1439 FLOORING BAR
UA 1440 CASTELLATED FLAT
UA 144 I SERRATED FLAT
UA 1442 ANGLE Serrated
UA 1491 VINYL FLOOR COPE
UA 1495 NOSING Double Round
UA 1496 NOSING Double Square
UA 1497 NOSING Single Round
UA 1498 NOSING Single Square
UA 1574 CARPET COPE
UA 1575 FLOORING EDGE
UA 1576 FLOORING BAR
UA 1577 FLOORING BAR
UA 2197 NOSING Serrated
UA 2323 FORMICA TRIM
UA 4227 NOSING Single Round
UA 4228 NOSING Single Square
UA 4403 NOSING Serrated
UA 5672 TILE EDGE
UA 5673 TILE BULLNOSE

UA 1432
NOSING Heavy Serrated kg/m 0.419 P I54
OAD 49.86×27

UA 1433

NOSING Round Serrated kg/m 0.228 P 126
OAD 33.13×29.5

UA 1434

NOSING Light Serrated
$\mathrm{kg} / \mathrm{m} 0.175$ P 92
OAD 35.5×15

UA 1435
ANGLE Serrated
$\mathrm{kg} / \mathrm{m} 0.204$ P 93
OAD 26.42×19

UA 1436
NOSING Castellated
$\mathrm{kg} / \mathrm{m} 0.466$ P I 52
OAD 57.5×16

UA 1437
CARPET EDGE Serrated $\mathrm{kg} / \mathrm{m} 0.122$ P 64
OAD 26.5×9

UA 1442

ANGLE Serrated $\mathrm{kg} / \mathrm{m} 0.143$ P 85
OAD 20×20

UA 2197
NOSING Serrated
$\mathrm{kg} / \mathrm{m} 0.506$ P 230
OAD 70×40
UA 4403
NOSING Serrated kg/m 0.540 P 147
OAD 58×15.3

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWSE INDICATED. DIAGRAMS ARE SCHEMATC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS.
OAD $=$ OVERALI DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

- ullrich aluminum co ltd

UA 1442
UA 1435

UA 4403

UA 1437

UA 1434

UA 1436

UA 2197
UA 1433

UA I495
NOSING Double Round $\mathrm{kg} / \mathrm{m} 0.558 \quad$ P 235
OAD 87.6×28
UA 1496
NOSING Double Square kg/m 0.566 P 234
OAD 87.6×28
UA 1497
NOSING Single Round $\mathrm{kg} / \mathrm{m} 0.388 \mathrm{P} 164$ OAD 55.2×28

UA 1498

NOSING Single Square $\mathrm{kg} / \mathrm{m} 0.378$ P 160
OAD 52.2×28
UA 4227
NOSING Single Round $\mathrm{kg} / \mathrm{m} 0.437$ P 180
OAD 63.7×28
UA 4228
NOSING Single Square $\mathrm{kg} / \mathrm{m} 0.428$ P 176
OAD 60.7×28

NOSING INFILLS

Designs Available WALKSAFE - SMOOTH AQUADEK - TREADED Width 27 mm \& 42 mm Various Colours

DIAGRAMS ACTUAL SIZE UNLESS
DIAGRAMS ACTUAL SIZE UN
OTHERWISE INDICATED.
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC DIAGRAMS ARE ECHEMATIC
AND NOT INTENDED AS AND NOT INTENDEDAS OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY
ULLRICH

UA 1497

UA 1498

UA 4228

UA 1496

WALKSAFE

AQUADEK

AQUADEK
TOPVIEW

INFILLS SOLD SEPARATELY

DIE No

DESCRIPTION

UA 1318	TOE RAIL
UA 1415	TOE RAIL Prepunched
UA 1416	PERSPEX JOINTER
UA 1418	PERSPEX UPRIGHT
UA 1419	PERSPEX CAP
UA 1420	PERSPEX PILLAR CAP
UA 1421	PERSPEX CAP
UA 1422	FIBREGLASS CAP
UA 1423	SAILTRACK
UA 1424	SAILTRACK
UA 1425	SAILTRACK
UA 1519	TOE RAIL Prepunched
UA 1520	TOE RAIL Prepunched
UA 1640	GUNNEL
UA 2687	GUNNEL RAIL
UA 2785	PERSPEX CAP
UA 2875	KEEL
UA 2907	BOAT GUNNEL
UA 2972	BOAT RIB
UA 3079	GUNNEL
UA 3147	GUNNEL RAIL
UA 3212	KEEL
UA 3213	KEEL
UA 3418	SAILTRACK
UA 3747	HULL PLANING STRIP
UA 3811	KEEL
UA 3943	GUNNEL
UA 4903	GUNNEL RAIL
UA 5179	HATCH SECTION
UA 5236	GUNNEL
UA 5237	PERSPEX CAP
UA 5283	BOAT RIB
UA 5889	DECK CAPPING
UA 6770	HATCH SECTION
UA 6771	HATCH SECTION
UA 7072	GUNNEL
UA 7177	LIPPED CHANNEL
UA 7891	DOOR JAMB
UA 7892	DOOR FRAME
UA 7893	DOOR TRANSOM
AUS 10120	KEEL
AUS $1012 I$	KEEL
AUS 10122	KEEL
AUS 10123	KEEL
AUS 10124	GUNNEL RAIL
TRANSOM DOUBLE CHANNEL	
US	

[^2]UA 1318
TOE RAIL
$\mathrm{kg} / \mathrm{m} 0.220 \mathrm{P} 81$
OAD 22.22×19.6

UA 1415
TOE RAIL Prepunched
kg/m 1.130 P 219
OAD 65×50.5

UA 1519
TOE RAIL Prepunched kg/m 2.194 P 235
OAD 69.82×55.54

UA 1520

TOE RAIL Prepunched $\mathrm{kg} / \mathrm{m} 1.158$ P 210
OAD 57.1×50.19
UA 2875
KEEL
kg/m 1.65 I P 269
OAD 77.6×32.2

UA 2972
BOAT RIB
$\mathrm{kg} / \mathrm{m} 1.397 \mathrm{P} 183$
OAD 76.2×19
UA 3212
KEEL
kg/m 1.009 P 135
OAD 38.7×29.55
UA 3213
KEEL
kg/m 2.105 P 214
OAD 64.3×45

UA 3747
HULL PLANING STRIP $\mathrm{kg} / \mathrm{m} 0.526 \quad$ P 79
OAD 30×12

UA 38II

KEEL
kg/m 1.169 P I57
OAD 40×30
UA 5283
BOAT RIB
kg/m $1.69 \mid$ P 228
OAD 98.7×18.9

DIAGRAMS ACTUAL SIZE UNLESS OTHERWIS INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFCATION DRAWINGS. OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 7177

UA 1422

UA 1421

UA 3418

UA 1420

UA 1416

UA 1418

UA 1419

UA 5237

UA 2785

UA 1416
PERSPEX JOINTER
$\mathrm{kg} / \mathrm{m} 0.119$ P 50
OAD 17×6

UA 1418

PERSPEX UPRIGHT
kg/m 0.434 P 129
OAD 25.5×18

UA 1419

5 mm PERSPEX CAP $\mathrm{kg} / \mathrm{m} 0.538$ P II7 OAD 25.5×14

UA 1420

5 mm PERSPEX PILLAR CAP
$\mathrm{kg} / \mathrm{m} 0.564$ P 139
OAD 25.5×14
UA 1421
5 mm PERSPEX CAP $\mathrm{kg} / \mathrm{m} 0.393$ P 99
OAD 22×12

UA 1422

5mm FIBREGLASS CAP $\mathrm{kg} / \mathrm{m} 0.133$ P 70
OAD 12×9

UA 1423

SAIL TRACK
kg/m 0.712 P 183
OAD 52×21
UA 1424
SAILTRACK
$\mathrm{kg} / \mathrm{m} 0.478 \quad \mathrm{P} 124$
OAD 32×12

UA 1425

SAILTRACK
$\mathrm{kg} / \mathrm{m} 0.213 \quad$ P 85
OAD 22×8

UA 2785

5.4mm PERSPEX CAP $\mathrm{kg} / \mathrm{m} 0.372$ P 99
OAD 22×12

UA 3418
SAILTRACK
$\mathrm{kg} / \mathrm{m} 0.458 \quad$ P 130
OAD 31×17.13
UA 5237
5 mm PERSPEX CAP
$\mathrm{kg} / \mathrm{m} 0.175$ P 67
OAD 12.7×9.4
UA 7177
SAIL TRACK
kg / m I. 7 I 7 P I88
OAD 50×20

DIAGRAMS ACTUAL SIIE UNIESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS. OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1640
4mm GUNNEL
$\mathrm{kg} / \mathrm{m} 0.857$ P 167
OAD 38×32

UA 2687
GUNNEL RAIL
$\mathrm{kg} / \mathrm{m} 0.758 \quad \mathrm{P} 198$
OAD 47×32

UA 2907

GUNNEL RAIL
kg/m 1.107 P 260
OAD 89.88×16

UA 3079

4-5-4mm GUNNEL kg/m I.ll0 P 194
OAD 50×35
UA 3147
GUNNEL RAIL
kg/m 0.83 I P 263
OAD 65×40
UA 3943
5 mm GUNNEL
kg/m $1.571 \quad$ P 243
OAD 60×45

UA 4903
GUNNEL RAIL
kg/m 1.109 P 222
OAD 42.2×38
Takes 19 mm Timber Fillet (NOT AVAILABLE AT ULLRICH)

UA 5236

5-6-5mm GUNNEL kg/m 1.706 P 240
OAD 60×45

UA 7072
6 mm GUNNEL
kg/m 2.322 P 298
OAD 75×55

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND Not intended as SPECIFCATION DRAWINGS OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1640

UA 3079

UA 3943

UA 7072

UA 5236

UA 2907

AUS IOI20
KEEL
kg/m 0.652 P 122
OAD 41.06×14.72

AUS IOI2I
KEEL
$\mathrm{kg} / \mathrm{m} 1.538$ P 186
OAD 42.23×27.26

AUS 10122
KEEL
kg/m 0.674 P 124
OAD 25.8×21.5
AUS IOI 23
KEEL
kg/m 1.02 I P 156
OAD 35×27.55
AUS 10124
GUNNEL RAIL
kg/m 1.156 P 263
OAD 89.87×16
AUS IOI27
TRANSOM DBL CHANNEL
$\mathrm{kg} / \mathrm{m} 1.732 \quad$ P 427
OAD 100×31.5

[^3]
DIE No DESCRIPTION

UA 1406	DBL SIDED AWNING RAIL
UA 1407	AWNING DRIP RAIL
UA 1408	LIGHT AWNING RAIL
UA 1409	DRIP RAIL
UA 1410	DRIP RAIL
UA 141 I	LIGHT BUS DRIP RAIL
UA 1412	DRIP RAIL
UA 1413	HEAVY BUS DRIP RAIL
UA 1414	DRIP RAIL
UA 1417	RUB RAIL
UA 1426	HERZIM THRESHOLD
UA 1427	RUB RAIL
UA 1428	RUB RAIL
UA 1429	RUB RAIL
UA 1430	RUB RAIL
UA 143 I	RUB RAIL
UA 1483	RUB RAIL
UA 1605	RUB RAIL
UA 1606	RUB RAIL
UA 1608	STD AWNING RAIL
UA 1875	BUFFER RAIL
UA 2218	BUS RUB RAIL
UA 2359	BUS RUB RAIL
UA 2583	RUB RAIL
UA 2584	RUB RAIL
AUS 5287	FLANGED SAILTRACK
UA 6074	DBL SIDED RAIL
UA 6553	FLANGED AWNING RAIL
AUS 8362	DBL ROPE RAIL
AUS 10054	SAILTRACK
AUS 10247	SAILTRACK

UA 1406
DBL SIDED AWNING RAIL $\mathrm{kg} / \mathrm{m} 0.335 \mathrm{P}\| \|$
OAD 32×13.91 ID $1 / \mathrm{mm}$
UA 1407
AWNING DRIP RAIL
$\mathrm{kg} / \mathrm{m} 0.506 \mathrm{P}$ I 4 I
OAD 37.93×13.4 ID I Imm
UA 1408
LIGHT AWNING RAIL
$\mathrm{kg} / \mathrm{m} 0.22 \quad$ P 104
OAD 30.1×13.15 ID 11.2 mm
UA 1409
DRIP RAIL
$\mathrm{kg} / \mathrm{m} 0.303 \quad$ P 72
OAD 19×14
UA 1410
DRIP RAIL
$\mathrm{kg} / \mathrm{m} 0.357$ P 82
OAD 22×16

UA I4II

LIGHT BUS DRIP RAIL
$\mathrm{kg} / \mathrm{m} 0.256 \quad$ P 98
OAD 25.5×16.5

UA 1412

DRIP RAIL
kg/m 0.13। P 59
OAD 16×10

UA 1413

HEAVY BUS DRIP RAIL
$\mathrm{kg} / \mathrm{m} 0.431$ P 100
OAD 24×22
UA 1414
DRIP RAIL
$\mathrm{kg} / \mathrm{m} 0.146 \quad$ P 74
OAD 21.5×12.5

UA 1608

STD AWNING RAIL
kg/m $0.221 \quad$ P 96
OAD 28×12.8 ID 12.8 mm
AUS 5287
FLANGED SAILTRACK
kg/m 0.297 P 133
OAD $45 \times 11.61 \quad$ ID 10 mm

UA 6074

DBL SIDED RAIL kg/m 3.032 P 28I
OAD 62.7×36.4

DIAGRAMS ACTUAL SIZE UNLLESS
OTHERWISE INDICATED
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS
AND NOT INTENDED AS
SPECFICATION DRAWING
OAD $=$ OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY

AUS 10054

AUS 8362

UA 6553

FLANGED AWNING RAIL $\mathrm{kg} / \mathrm{m} 0.496 \mathrm{P} 192$
OAD 64.8×15.95 ID 13 mm
AUS 8362
DBL ROPE RAIL
kg/m 0.272 P 130
OAD 27.5×12.2 ID 9.4 mm
AUS 10054
SAILTRACK
$\mathrm{kg} / \mathrm{m} 0.194$ P 97
OAD 28.5×11.25 ID 9.2 mm

AUS 5287

AUS 10247

UA 6074

AUS 10247
SAILTRACK
kg/m $0.639 \quad$ P 135
OAD 46.7×13.2 ID 9.6 mm

UA 1605

UA 1428

UA 1429

UA 1430

UA 1427

UA 1606

UA 1483

UA 1417

UA 1417
RUB RAIL 31.6 mm
kg/m 0.27। P 104
OAD 33×12 Infill 5206
ENDCAPS available:
Code BOAHHENDCAPS

UA 1427
RUB RAIL 32mm
kg/m 0.126 P 89
OAD 32×4.5 Infill \|। Serrated

UA 1428

RUB RAIL 17 mm
kg/m 0.106 P 47
OAD 17×5 Infill 12

UA 1429
RUB RAIL 25 mm
$\mathrm{kg} / \mathrm{m} 0.169$ P 67
OAD 25×5 Infill 12

UA 1430

RUB RAIL 31 mm
$\mathrm{kg} / \mathrm{m} 0.120 \quad$ P 82
OAD $31 \times 4 \operatorname{lnfill} 12$

UA 1431
RUB RAIL 40 mm
$\mathrm{kg} / \mathrm{m} 0.291 \mathrm{P} \mid 31$
OAD 40×9 Infills III,I।2
ENDCAPS available:
Code BOAENDCAP/40

UA 1483
RUB RAIL 25.2 mm
$\mathrm{kg} / \mathrm{m} 0.220 \quad$ P 76
OAD $27 \times 7 \operatorname{lnfill} 12$

UA 1605
RUB RAIL 13 mm
$\mathrm{kg} / \mathrm{m} 0.077$ P 40
OAD 13×4.5 Infill \| \| Serrated

UA 1606

RUB RAIL I I.4mm
$\mathrm{kg} / \mathrm{m} 0.088 \quad$ P 44
OAD 13×7 Infill II Serrated

INFILLS SOLD SEPARATELY

UA 1426
HERZIMTHRESHOLD 89.5 mm
kg/m 0.819 P 215
OAD 89.5×9 Infill 12

UA 1875

BUFFER RAIL 30 mm
$\mathrm{kg} / \mathrm{m} 0.427 \mathrm{P} \mid 18$
OAD 30×15 Infill 5205

UA 2218

BUS RUB RAIL 58mm Cover $\mathrm{kg} / \mathrm{m} 0.402 \quad$ P 144 OAD 43.5×1 I. 5 Infill 5246
ENDCAPS available:
Code TRABUSENDCAP

UA 2359
BUS RUB RAIL 50 mm
$\mathrm{kg} / \mathrm{m} 0.235$ P 146
OAD 50×10 Infill 4870
UA 2583
RUB RAIL 59.3mm
$\mathrm{kg} / \mathrm{m} 0.398$ P 172
OAD 59.3×10.47 Infill 37

UA 2584

RUB RAIL 97.8 mm
$\mathrm{kg} / \mathrm{m} 0.615$ P 276
OAD 97.8×9.9 Infill II।

UA 2359

UA 2218

UA 1875

UA 1426

DIE No

UA 1393
UA 1395
UA 1396
UA 1397
UA 1398
UA 1399
UA 1400
UA 1402
UA 1403
UA 1404
UA 1405
UA 1486
UA 1494
UA 1509
UA 1510
UA 1511
UA 1573 ROLLER GLIDE CHANNEL
UA 158I TRUCK SIDE BOARD
UA 1583 CANT RAIL
UA 1584 TRUCK SIDE RAIL
UA 2424 SHUTTER CONNECTOR
UA 2426 ROLLER SHUTTER
UA 2463 CHANNEL
UA 2741 CANT RAIL
UA 3328 COAMING RAIL
UA 3493 DECKING
AUS 4141 DECKING
UA 4394 CHASSIS RUNNER CAP
UA 4395 CHASSIS RUNNER
UA 4626 GRATE Punched
UA 47 II TOP HAT
UA 5006 COAMING RAIL
UA 5183 SIDE BOARD
AUS 5250 TRUCK FLAP RUNNER
UA 5275 SUB FRAME
UA 5814 TIPPER SUB FRAME
UA 5972 BUS SECTION
UA 6034 BUS SECTION
UA 6153 SIDE RAIL
AUS 6244 RUB RAIL
UA 6388 SIDE RAIL
UA 6567 SIDE RAIL
UA 66II DECKING
UA 6784 P-SECTION
UA 6892 CHANNEL

DIE No DESCRIPTION

AUS 8600 RUNNING BOARD STEP
AUS 8644 SIDE BOARD
AUS 8816 TRUCK ANGLE
AUS 8848 MOUNTING BLOCK
AUS 8849 FRAME WALL
AUS 8850 FRAME SECTION
AUS IOOI5 TRUCK DECK
AUS 10283 CORNER CANT RAIL
AUS 10369 DECK MIDDLE PLANK
AUS 10370 DECK STARTER PLANK
AUS 1037 REAR COAMING
AUS I0372 SIDE COAMING

UA 1398
EASYDEK COAMING RAIL
kg/m 1.243 P 250
OAD 63×33.5 fits 1399
UA 1400
SIDE RAIL
kg/m 1.670 P 490
OAD 102×61
UA 1486
COAMING RAIL
kg/m $2.432 \quad$ P 419
OAD 98.3×60.3
UA 3328
COAMING RAIL
kg/m 1.81। P 452
OAD 98×65
UA 3493
DECKING
$\mathrm{kg} / \mathrm{m} 1.667 \mathrm{P} 491$
OAD 130×66.5
UA 66II
DECKING
kg/m 1.971 P611
OAD 229.2×26

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS.
OAD $=$ OVERALI DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 4626

UA 1405

UA I397

UA 1494
TRAY SIDE CAP
kg/m 1.202 P 287
OAD 34.93×63.5

UA 1581
TRUCK SIDE BOARD kg/m 2.172 P 647
OAD 225×25
UA 1584
TRUCK SIDE RAIL kg/m $1.521 \quad$ P 455
OAD 136×50
AUS 5250
TRUCK FLAP RUNNER
kg/m 2.066 P 435
OAD 75.1×50.5
AUS 6244
RUB RAIL
kg/m 1.440 P 405
OAD 145.2×14

AUS 6244

UA 1584
UA 1581

UA 1396
CANT RAIL
kg/m 1.966 P 558
OAD 152.5×79.4
Cast Corner UCI396
UA 1509
CANT with Drip Rail kg/m 2.40। P646
OAD 153.97×136.62

UA 15II
CANT RAIL
kg/m 0.629 P 208
OAD 73.28×56.55

UA 1583
CANT with Drip Rail
$\mathrm{kg} / \mathrm{m} 1.615$ P 479
OAD 109.33×90

UA 274I
CANT RAIL
kg/m 1.806 P 451
OAD 106×106

UA 6388

SIDE RAIL
kg/m 1.022 P 243
OAD 101.43×45.34
AUS 8816
TRUCK ANGLE kg/m 1.567 P 393 OAD 100×100

UA 2463
CHANNEL
kg/m 3.056 P 336
OAD 100×50
UA 5006
COAMING RAIL
kg/m 7.173 P914
OAD 215.9×119.4
UA 5275
SUB FRAME
kg/m 13.85। P 807
OAD 232.6×152.4

UA 2463

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS
SPECIFICATON DRAWINGS.
OAD $=$ OVERALL DIMENIONS
$\mathbf{P}=$ EXT PERIPHERY

UA 5814
TIPPER SUB FRAME
kg/m 9.596 P 555
OAD 179×106

UA 6892
CHANNEL
kg/m 3.777 P 544
OAD 100×75

UA 5814

UA 6892

AUS 10369
DECK MIDDLE PLANK
kg/m 1.936 P 636
OAD 192.85×40

AUS 10370
DECK STARTER PLANK
kg/m 1.789 P 607
OAD 154.45×70.8
AUS 10371
REAR COAMING
kg/m 1.120 P 274
OAD 69×39

AUS 10372
SIDE COAMING
kg/m 1.603 P 329
OAD 101×31.25

AUS 4141
DECKING
$\mathrm{kg} / \mathrm{m} 1.617 \mathrm{P} 571$
OAD 171.6×32

AUS 10015
TRUCK DECK
kg/m 1.645 P 478
OAD 145×66.5
AUS 10283
CORNER CANT RAIL
kg/m 2.315 P 454
OAD 118.9×118.9

IAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ON AND NOT INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

DIE No	DESCRIPTION
UA 1623	1.6 mm CAPPING
UA 1624	1.6 mm JOINTER
UA 1451	3mm CAPPING
UA 1452	3 mm JOINTER
UA 1453	3 mm INT CORNER
UA 1454	3 mm EXT CORNER
UA 3871	4.5mm AQUAPANEL CAP
UA 3872	4.5 mm AQUAPANEL JOINTER
UA 3874	4.5mm AQUAPANEL INT JOINTER
UA 3873	4.5mm AQUAPANEL EXT JOINTER
UA 3875	4.5 mm AQUAPANEL SCOTIA
UA 1455	5mm CAPPING
UA 1456	5 mm JOINTER
UA 1457	5 mm INT CORNER
UA 1458	5mm EXT CORNER
UA 1461	6.5 mm CAPPING
UA 1460	6.5 mm JOINTER
UA 1622	6.5 mm INT CORNER
UA 1459	6.5 mm EXT CORNER
UA 4405	10 mm CAPPING
UA 4406	10 mm JOINTER
UA 4408	10 mm INT CORNER
UA 4407	10 mm EXT CORNER
UA 3467	12 mm JOINTER OFFSET
UA 4412	13 mm CAPPING
UA 7829	13 mm JOINTER
UA 7827	13 mm INT CORNER
UA 7828	13 mm EXT CORNER
UA 4413	13 mm JOINTER
UA 4414	13 mm SERRATED CAP
UA 4409	13 mm SERRATED JOINTER
UA 441I	13 mm SERRATED INT CORNER
UA 4410	13 mm SERRATED EXT CORNER
UA 1627	14.5 mm CAPPING
UA 1628	14.5 mm JOINTER
UA 2669	16 mm JOINTER
UA 3894	16 mm JOINTER
UA 3403	18 mm CAPPING
UA 1629	18.5 mm JOINTER
AUS 8954	19 mm CAPPING
UA 1922	20mm CAPPING
UA 3404	22mm CAPPING
UA 6887	23mm EXT CORNER
UA 1472	VARIABLE JOINTER
UA 1473	PARTITION JOINTER

UA 1623
1.6 mm CAPPING $\mathrm{kg} / \mathrm{m} 0.083 \quad$ P 54
OAD 18×4.6

UA 145
3 mm CAPPING $\mathrm{kg} / \mathrm{m} 0.088 \quad$ P 68 OAD 21×6

UA 387

4.5 mm AQUAPANEL CAP $\mathrm{kg} / \mathrm{m} 0.115 \quad$ P 70
OAD 19×7.4
UA 1455
5 mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.094 \mathrm{P} 71$
OAD 21×8

UA 1461

6.5 mm CAPPING kg/m 0.099 P 75
OAD 21×9.5

UA 4405

10 mm CAPPING $\mathrm{kg} / \mathrm{m} 0.117 \mathrm{P} 89$
OAD 23×13.4

UA 4412

13 mm CAPPING $\mathrm{kg} / \mathrm{m} 0.150$ P 95
OAD 21.2×16.8

UA 4414

13 mm SERRATED CAP $\mathrm{kg} / \mathrm{m} 0.224$ P 125
OAD 33×17.78

UA 1627

14.5 mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.153$ P 96
OAD 21.2×18
UA 3403
18 mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.163$ PI03
OAD 21.2×20.8
AUS 8954
19 mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.680 \mathrm{PI} 73$
OAD 40×25

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS
SPECIFCATION DRAWINGS OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1922
20mm CAPPING $\mathrm{kg} / \mathrm{m} 0.172$ P 109 OAD 23.8×21.2

UA 3404

22mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.176 \mathrm{P}\| \|$
OAD 24.8×21.2

UA 1453

3 mm INT CORNER
$\mathrm{kg} / \mathrm{m} 0.143$ P 108
OAD 23×17.5

UA 3874
4.5 mm INT AQUAPANEL
$\mathrm{kg} / \mathrm{m} 0.215 \quad \mathrm{P} \mid 34$
OAD 24.1×24.1

UA 1457

UA 1622

5 mm INT CORNER
kg/m 0.147 P III
OAD 23.5×18

UA 1622
6.5 mm INT CORNER
$\mathrm{kg} / \mathrm{m} 0.172$ P IIO
OAD 24×19

UA 4408

10 mm INT CORNER
$\mathrm{kg} / \mathrm{m} 0.224 \mathrm{P} 161$
OAD 31.5×23.5

UA 7827
I 3mm INT CORNER
$\mathrm{kg} / \mathrm{m} 0.464$ P 228
OAD 48×38.5

UA 44 II
| 3mm INT SERRATED
$\mathrm{kg} / \mathrm{m} 0.453$ P 230
OAD 48×38.5

DIAGRAMS ACTUAL SIZE UNILESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS SPECIFCATION DRAWINGS.
OAD $=$ OVERALI DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1454

3mm EXT CORNER
$\mathrm{kg} / \mathrm{m} 0.129 \quad$ P 97
OAD 19×16.6
UA 3873
4.5 mm EXT AQUAPANEL
$\mathrm{kg} / \mathrm{m} 0.216 \quad$ P 138
OAD 19.05×18.5

UA 1458

5mm EXT CORNER
$\mathrm{kg} / \mathrm{m} 0.140$ P 105
OAD 19×18.8
UA 1459
6.5 mm EXT CORNER
$\mathrm{kg} / \mathrm{m} 0.148 \mathrm{P} 108$
OAD 20.35×18.9

UA 4407

10 mm EXT CORNER
$\mathrm{kg} / \mathrm{m} 0.246 \quad$ P 178
OAD 30.3×29

UA 7828

13 mm EXT CORNER
kg/m 0.465 P 229
OAD 42.9×38.7

UA 44I0

I 3mm EXT SERRATED
kg/m 0.437 P 232
OAD 42.18×38.70

UA 6887

23mm EXT CORNER
kg/m 1.64 I P 329
OAD 69.2×69.2

DIE No	DESCRIPTION
UA 1310	WOOLPILE DOOR STOP
UA 1374	SECURAMESH CHANNEL
UA 1375	SECURAMESH FIX FRAME
UA 1376	SECURAMESH FIX FRAME
UA 1377	DOOR FRAME
UA 1379	STAKE
UA 1387	MESH WINDOW FRAME
UA 1609	ADJUSTER CHANNEL
UA 1649	SEC JAMB FIX
UA 1738	DOOR FRAME
UA 1864	STAKE
UA 1942	SLIDING TRACK
UA 1943	SLIDING TRACK
UA 2506	WINDOW FRAME
UA 2985	JAMB EXTENSION
UA 3592	MESH WINDOW FRAME
UA 3614	ADJUSTER CHANNEL
UA 3929	JOINTER
UA 4077	SECURAMESH CHANNEL
UA 4110	DOOR TRACK
UA 41II	TRACK FRAME
UA 4112	DOOR FRAME
AUS 4314	STAKE
UA 5563	STAKE
UA 5632	JAMB EXTENSION
UA 5655	DOOR FRAME
UA 5971	STAKE
AUS 6463	STAKE
AUS 6487	ADAPTOR
AUS 6518	WINDOW FRAME
AUS 6546	DOOR FRAME
AUS 6547	WINDOW FRAME
UA 6836	DOORTRACK
UA 7007	SECURITY JOINTER
UA 7008	SECURITY FRAME
UA 7710	SEC DOUBLE SLIDING TRACK
UA 7715	SEC DOUBLE DOOR CATCH
UA 8370	STAKE
AUS 10031	SECURITY SCREEN FRAME
AUS 10039	DOOR FRAME
UA 10061	ULLTRASAFE DOOR FRAME
UA 10062	ULLTRASAFE DOOR BEAD
UA 10063	ULLTRASAFE WINDOW FRAME
UA 10064	ULLTRASAFE WINDOW BEAD
AUS 10065	DOOR FRAME

UA 1374
SECURAMESH CHANNEL kg/m $0.151 \quad$ P 76
OAD 15×10
UA 1375
SECURAMESH FIX FRAME $\mathrm{kg} / \mathrm{m} 0.269$ P 142
OAD 38×10
UA 1376
SECURAMESH FIX FRAME $\mathrm{kg} / \mathrm{m} 0.257$ P 129
OAD 28×10.9
UA 1377
DOOR FRAME
$\mathrm{kg} / \mathrm{m} 0.715 \quad$ P 240
OAD 72×20
UA 1387
MESH WINDOW FRAME $\mathrm{kg} / \mathrm{m} 0.283 \quad \mathrm{P} 126$
OAD 33.5×10.5

UA 1609

ADJUSTER CHANNEL
$\mathrm{kg} / \mathrm{m} 0.149$ P 85
OAD 14.5×14.5

UA 1738

DOOR FRAME
$\mathrm{kg} / \mathrm{m} 0.58 \mathrm{I} \quad$ P 237
OAD 69.5×20
UA 2985
JAMB EXTENSION
kg/m 1.011 P 353
OAD 97×32

UA 3614

ADJUSTER CHANNEL
$\mathrm{kg} / \mathrm{m} 0.196$ P 94
OAD 16.2×16.2
UA 3929
JOINTER
$\mathrm{kg} / \mathrm{m} 0.301 \quad$ P 182
OAD 40×10
UA 4077
SECURAMESH CHANNEL $\mathrm{kg} / \mathrm{m} 0.317$ P 99
OAD 20×12
UA 4112
DOOR FRAME
kg/m 0.68। P 233
OAD 74.1×20

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS AND NOT INTENDED AS
SPECIFCATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1377

UA 41 12

UA 1376

UA 1375

UA 5655

DOOR FRAME
$\mathrm{kg} / \mathrm{m} 0.763$ P 230
OAD 71.6×19

UA 5632
JAMB EXTENSION
kg/m 1.050 P 318
OAD 79×32

UA 5655

UA 1738

UA 1374

UA 4077

UA 1387

UA 2985
UA 5632

UA 1942
SEC SLIDING TRACK
$\mathrm{kg} / \mathrm{m} 0.773$ P 298
OAD 41.5×41
UA 1943
SEC SLIDING TRACK
$\mathrm{kg} / \mathrm{m} 0.468 \quad P 212$
OAD 32×31

UA 4IIO

DOORTRACK
$\mathrm{kg} / \mathrm{m} 0.349$ P 155
OAD 25×22.5

UA 4III

TRACK FRAME
kg/m 0.537 P 265
OAD 33×32
UA 6836
DOORTRACK
$\mathrm{kg} / \mathrm{m} 0.477 \quad$ P 216
OAD 33×32

UA 7710

SEC DOUBLE SLIDING TRACK
$\mathrm{kg} / \mathrm{m} 1.373$ P 465
OAD 82.3×41
UA 7715
SEC DOUBLE DOOR CATCH $\mathrm{kg} / \mathrm{m} 0.103$ P 58
OAD 21.8×8

AUS 6546

AUS 6547

AUS 10039

AUS 10031

AUS 4314

UA 5563

STAKE fits 10061
kg/m 3.802 P 537
OAD 74.9×74.9

UA 8370
STAKE fits 10063
kg/m 2.490 P 173
OAD 44.45×44.45
UA 10061
ULLTRASAFE DOOR FRAME kg/m 0.829 P 270
OAD 79.9×19

UA 10062
ULLTRASAFE DOOR BEAD $\mathrm{kg} / \mathrm{m} 0.231 \quad$ P 83
OAD 26.95×8.78
UA 10063
ULLTRASAFE WINDOW FRAME $\mathrm{kg} / \mathrm{m} 0.424 \quad \mathrm{P} 144$
OAD 43.8×11

UA 10064

ULLTRASAFE WINDOW BEAD $\mathrm{kg} / \mathrm{m} 0.189 \quad$ P 77 OAD 26.95×5.23

UA 10061

UA 10062

UA 10063
UA 10064

ULTRA HIGH BOND TAPE
Code: 2045-0 12

FABRICATION GUIDE

Note:To comply with AS5039 the door must be manufactured as shown.

BLACK PLASTIC INTERNAL BEAD CORNERS

DIAGRAMS ACTUAL SIZE UNLLESS
OTHERWISE INDICATED.

COMMERCIAL APPLICATIONS

For security doors, windows and partitions in workplaces, storage areas and public buildings, where intrusion of insects is detrimental to comfort and hygiene and where natural airflow is desirable:

Kitchens and food preparation areas Garden restaurants, patio bars and cafés
Hotel and motel dining and accommodation rooms
Factory cafeterias
Hospitals and medical facilities
Food processing plants and storage areas
Food retail outlets
Roll curtains for tent manufacturing (fibreglass mesh)

DOMESTIC APPLICATIONS

All dwelling apertures or partitions where intrusion of insects is detrimental to living comfort and hygiene, and where natural airflow is desirable:

Main entrances
Kitchens
Dining rooms
Living rooms and bedrooms
Breeze-ways
Conservatories
Summer houses
Covered decks and patios
Pergola walls

MATERIALS
Aluminium

Black painted
Silver treated

ROLLWIDTHS
810 mm
910 mm
1070 mm
1220 mm
1520 mm
1830 mm

Fibreglass	Black	810 mm	$18 \times 16 \mathrm{TPI} \times 0.01 \mathrm{I}^{\prime \prime}$
	Grey	910 mm	
	1070 mm		
	1220 mm		
	1520 mm		
	1830 mm		

Stainless steel \quad Natural	910 mm
	220 mm

ROLL LENGTHS

Standard 30-metre rolls, individually wrapped.
Other roll lengths may be available on request

DIE No DESCRIPTION

UA 1054	WINDOW FRAME
UA 1355	II.8mm BOTTOM CHANNEL
UA 1379	STAKING ANGLE
UA 1380	HANDLE
UA 138 I	VISION RAIL
UA 1382	VISION RAIL
UA 1383	IOmm BOTTOM CHANNEL
UA 1384	IOmm TOP CHANNEL
UA 1385	DOOR FRAME
UA 1386	WINDOW FRAME
UA 1388	DOOR FRAME
UA 1389	WINDOW SECTION
UA 1513	STAKING ANGLE
UA 1609	II.8mm TOP CHANNEL
UA 1610	WINDOW FRAME
UA 1611	DOOR FRAME
UA 3512	VISION RAIL
AUS 5492	PATIO POST
AUS 5493	PATIO HOLDER
AUS 5494	PATIO CORNER POST
UA 5526	SLIDING DOOR CHANNEL
UA 5534	DOUBLE BOTTOMTRACK
UA 5537	DOUBLE TOPTRACK
UA 5633	STAKING ANGLE
UA 5634	VISION RAIL
UA 5635	STAKING ANGLE
UA 5636	DOOR FRAME
UA 5637	WINDOW SECTION
UA 5638	WINDOW SECTION
UA 5699	WINDOW TRACK
UA 6246	WINDOW FRAME
AUS 6520	PATIO POST
AUS 10558	DOOR FRAME

UA 1054
WINDOW FRAME
kg/m 0.33I P 124
OAD 34×21

UA 1385

UA 1386

UA 1389

UA 1355
11.8 mm BOTTOM CHANNEL (old) $\mathrm{kg} / \mathrm{m} 0.136$ P 67

UA 1610

UA 1611

UA 1388
\square

UA 1379

STAKE (gold) fits I 385, I 386
$\mathrm{kg} / \mathrm{m} 2.227$ P 264
OAD 50×50

UA 1054

UA 1609

UA 5637

UA 1355

UA 5638

UA 1389
WINDOW SECTION kg/m 0.234 P 76

UA 1379

UA 1513

WINDOW FRAME
$\mathrm{kg} / \mathrm{m} 0.235$ P 77
OAD 21.1×10.3

UA 16 II

DOOR FRAME
$\mathrm{kg} / \mathrm{m} 0.367 \mathrm{P}\| \|$
OAD 37.4×10.3

UA 5636

DOOR FRAME
$\mathrm{kg} / \mathrm{m} 0.499$ P 142
OAD 40×17

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS AND NNT INTENDED AS
SPECFICATION DRAWING OAD = OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY

UA 5637

WINDOW SECTION
kg/m 0.25 I P 96
OAD 25×11

UA 5638

WINDOW SECTION
$\mathrm{kg} / \mathrm{m} 0.256$ P 103
OAD 27.6×11

CORNER STAKE - PLASTIC

Fits I 388, 161 |
Code: FLYSTAKE

UA 5534

UA 5537

AUS 10558

UA 5699

UA 5633

UA 5635

CORNER STAKE - PLASTIC

UA 1380
HANDLE
$\mathrm{kg} / \mathrm{m} 0.139 \mathrm{P} 86$
OAD 24×18.5

UA 1383

10 mm BOTTOM CHANNEL
$\mathrm{kg} / \mathrm{m} 0.093$ P 58
OAD 12.5×9

UA 1384

10 mm TOP CHANNEL
$\mathrm{kg} / \mathrm{m} 0.120 \quad$ P 74
OAD 13×12.5

UA 5526

SLIDING DOOR CHANNEL $\mathrm{kg} / \mathrm{m} 0.468 \quad$ P 200
OAD 30.15×26.1
UA 5534
DOUBLE BOTTOMTRACK fits 1610
$\mathrm{kg} / \mathrm{m} 0.297$ P 145
OAD 27.7×24.5
UA 5537
DOUBLETOPTRACK fits 1610
kg/m 0.373 P 177
OAD 32×27.7

UA 5633

STAKE (yellow) fits 5636
kg/m 1.725 P 352
OAD 50×50

UA 5635

STAKE (brown) fits 5637
STAKE (purple) fits 5638
kg/m I. 256 PI86
OAD 45×45

UA 5699
WINDOW TRACK
kg/m 0.209 P 99
OAD 24×16
UA 6246
WINDOW FRAME
$\mathrm{kg} / \mathrm{m} 0.231 \quad \mathrm{P} 88$
OAD 25×11
AUS 10558
DOOR FRAME
$\mathrm{kg} / \mathrm{m} 0.547$ P 177
OAD 56.05×19.8

[^4]

UA 1381
VISION RAIL
kg/m 0.730 P 320
OAD 120.3×11.5
UA 1382
VISION RAIL
kg/m $0.361 \quad$ P 200
OAD 60×11.4
UA 3512
VISION RAIL
$\mathrm{kg} / \mathrm{m} 0.64 \mathrm{I}$ P 300
OAD 113×11
AUS 5492
PATIO POST
kg/m 0.499 P 23I
OAD 50×25
AUS 5493
PATIO HOLDER
$\mathrm{kg} / \mathrm{m} 0.225 \quad$ P 84
OAD 22.5×10.3

AUS 5494
PATIO CORNER POST
kg/m 0.86। P 262
OAD 50×50
UA 5634
VISION RAIL
$\mathrm{kg} / \mathrm{m} 0.568$ P 250
OAD 90×11.5

AUS 6520
PATIO POST
$\mathrm{kg} / \mathrm{m} 0.904$ P 28 l
OAD 50×50

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECFICATION DRAMNGS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

oulrichaluminum colto

DIE No DESCRIPTION

UA 1632 HEATSINK
UA 1633 HEATSINK
UA 1634 HEATSINK
UA 1635 HEATSINK
UA 2109 HEATSINK
UA 2238 HEATSINK
AUS 2284 HEATSINK
UA 265I HEATSINK
UA 2880 HEATSINK
UA 2960 HEATSINK
UA 3133 HEATSINK
UA 3295 HEATSINK
UA 4173 HEATSINK
UA 4248 HEATSINK
UA 4305 HEATSINK
AUS 432 HEATSINK
UA 4574 HEATSINK
UA 4718 HEATSINK
UA 4956 HEATSINK
UA 4979 HEATSINK

UA 1632
HEATSINK
kg/m 2.905 P 1093
OAD 108×58

UA 1633
HEATSINK
kg/m 3.455 P II 30
OAD 134×60.5

UA 1634
HEATSINK
kg/m 3.317 P 789
OAD 103×44.5

UA 1635

HEATSINK
kg/m 1.821 P 542
OAD 114.3×25.4

UA 2238
HEATSINK
$\mathrm{kg} / \mathrm{m} 3.166$ P 806
OAD 135×22.8

DIAGRAMS ACTUAL SIZE UNLLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS
SPECIFCATION DRAWINGS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

AUS 2284
HEATSINK kg/m 8.006 P I734
OAD 150×48
UA 2960
HEATSINK
kg/m 2.086 P 702
OAD 100×40

UA 3295
HEATSINK
kg/m 6.95। P 1385
OAD 150×40
UA 4248
HEATSINK kg/m 6.968 P 1242
OAD 127×47

DIAGRAMS ACTUAL SIZE UNLLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND Not intended as OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 4248

UA 2880

UA 2880
HEATSINK
kg/m 3.017 P 1062
OAD 133.5×60.5

UA 4574
HEATSINK
kg/m 2.594 P 722
OAD 74.I $\times 61.65$

UA 4956
HEATSINK
kg/m 4.47I P 820
OAD 80×53.5
UA 4979
HEATSINK
kg/m 4.509 P 1166
OAD 100×48

UA 4305
HEATSINK
kg/m $4.38 \mathrm{I} \quad$ P919
OAD 165×55

AUS 4321
HEATSINK
kg/m 8.675 P 1292
OAD 200×75

DIE No	DESCRIPTION	DIE No	DESCRIPTION
UA 1063	FRAME	AUS 5800	BEAD
UA 1064	FRAME	AUS 5801	MULLION
UA 1065	BLADE	AUS 5802	HEAD JAMB
UA 1089	BLADE	AUS 5803	SILL
UA 1368	BLADE	AUS 5804	HEAD ADAPTOR
UA 1572	BLADE	AUS 5805	BEAD
UA 1661	BLADE	UA 6401	BLADE
UA 1902	BLADE	UA 6430	65mm 2-PIECE SQUARE
UA 1903	FRAME	AUS 6445	120 mm SNAP IN
UA 1904	FRAME	AUS 6446	120 mm HEAD
UA 1913	FRAME	AUS 6447	120 mm JAMB
UA 2879	BLADE	AUS 6448	120 mm JAMB
UA 2885	FRAME	AUS 6449	50mm FRAME No. 2
UA 3101	BLADE	AUS 6450	50mm FRAME No.l
UA 3102	BLADE	AUS 6485	MULLION
UA 3164	BLADE	AUS 6488	SCREEN STAND OUT
UA 3414	BLADE	UA 6526	BLADE
UA 3431	FRAME	UA 6758	BLADE
UA 3442	WEATHER BAR	UA 6856	BLADE PANEL
UA 3653	BLADE	UA 6860	BLADE
UA 4085	BLADE	UA 6876	BLADE
UA 4133	CHANNEL	UA 7198	BLADE
UA 4134	CHANNEL LID	UA 7425	BLADE
UA 4202	JOINTER	UA 7452	BLADE
UA 4203	SILL WEATHER BAR	UA 7461	BRACKET
UA 4204	HEAD WEATHER BAR	UA 7613	BLADE PANEL
UA 4205	EXTENSION	UA 7694	BLADE PANEL
UA 4206	FINNED JOINTER	UA 7773	BLADE PANEL
UA 4230	TORSION BAR	UA 7774	BLADE CHANNEL
UA 4231	BLADE	UA 7788	BLADE PANEL
UA 4609	BLADE	AUS 8029	BLADE
UA 5018	BLADE	AUS 8422	LOUVRE CHANNEL
UA 5022	FIXED BLADE	AUS 10018	BLADE
UA 5032	BRACKET	AUS 10102	BLADE
UA 5033	SUN BLADE	AUS 10523	BRACKET
UA 5234	STORM LOUVRE		
UA 5354	BLADE		
UA 5355	BRACKET		
UA 5442	FRAME		
UA 5535	MULLION CLIP		
UA 5536	MULLION		
UA 5545	BLADE		
UA 5546	FIXED BLADE		
UA 5626	BLADE		
UA 5768	BLADE		

UA 1063
FRAME
kg/m $0.363 \quad$ P 176
OAD 40×33.6

UA 1064

FRAME
$\mathrm{kg} / \mathrm{m} 0.225 \mathrm{P} 122$
OAD 34.8×21.8
UA 1065
37 mm BLADE
$\mathrm{kg} / \mathrm{m} 0.209 \mathrm{P} \mid 10$
OAD 37×18

UA 1368

38mm BLADE fits 2885
$\mathrm{kg} / \mathrm{m} 0.5 \mathrm{IO} \quad$ P 200
OAD 72×38
UA 1572
BLADE fits 4635
$\mathrm{kg} / \mathrm{m} 0.440 \quad$ P 165
OAD 62.3×43.5

UA 1661

31.8mm BLADE fits 1655
kg/m 0.446 P 192
OAD 32×71

UA 1902

28.8 mm BLADE kg/m 0.183 P 105
OAD 28.8×20.5
UA 1903
FRAME
kg/m 0.394 P 145
OAD 36×22
UA 1904
FRAME
kg/m 0.189 P93
OAD 28.6×14.3
UA 1913
42mm FRAME
$\mathrm{kg} / \mathrm{m} 0.467 \mathrm{P} \mid 74$
OAD 47×30

UA 2885

38 mm FRAME
$\mathrm{kg} / \mathrm{m} 0.296 \mathrm{P} 197$
OAD 40×30

UA 3164
54 mm BLADE
kg/m 0.810 P 303
OAD 109.6×54

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS AND NOT INTENDED AS
SPECFFICATION DRAWINGS, OAD = OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY
© ULlrichaluminum co lto

NOTE: Not all products are available ex-stock, check with your local branch for advice on availability.

UA 1089
38mm BLADE fits 2885
$\mathrm{kg} / \mathrm{m} 0.522$ P 261
OAD 78×38
UA 3101
69mm BLADE fits 1671
kg/m 0.961 P 390
OAD 126.5×69

UA 3102
94mm BLADE fits I I 35
$\mathrm{kg} / \mathrm{m} 1.256$ P 460
OAD 151×94
UA 3414
81 mm BLADE
$\mathrm{kg} / \mathrm{m} 0.949$ P 352
OAD 95×8 I
UA 7425
73.8 mm BLADE
$\mathrm{kg} / \mathrm{m} 1.061 \quad$ P 389
OAD 110×73.8

UA 3414

UA 5354
BLADE
kg/m 1.536 P 232
OAD 110×22.55
Box Cavity takes 1273
Cast End Cap UCI989
UA 5355
BRACKET fits 5354, 6758
$\mathrm{kg} / \mathrm{m} 0.585 \mathrm{P} \mid 78$
OAD 64×22

UA 6430

$65 \times 65 \mathrm{~mm} 2$-PIECE SQUARE $\mathrm{kg} / \mathrm{m} 1.257$ P 349
OAD 65×61.15
UA 6526
BLADE
$\mathrm{kg} / \mathrm{m} 0.808$ P 186
OAD 89.8×12

UA 6758

BLADE
kg/m 2.412 P 373
OAD 180×30
Box Cavity takes 1273
Cast End Cap UCI500
UA 6860
BLADE
kg/m 1.315 P 249
OAD 120×18

UA 6876
BLADE
kg/m 1.588 P 307
OAD 150×18

IIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 6860

UA 6876

UA 5355

UA 5354

UA 6758

UA 6430

Self Mating
Overall $65 \times 65 \mathrm{~mm}$ Square

UA 5032
BRACKET
kg/m 1.556 P 334
OAD 73.57×60
UA 5033
SUN BLADE
$\mathrm{kg} / \mathrm{m} 0.932$ P 359
OAD 100×73.25
AUS 8029
BLADE
$\mathrm{kg} / \mathrm{m} 0.942 \mathrm{P} 21 \mathrm{l}$
OAD 100×20.4
AUS 8422
LOUVRE CHANNEL
$\mathrm{kg} / \mathrm{m} 0.348$ P 156
OAD 38.7×20.3
AUS 10018
BLADE
$\mathrm{kg} / \mathrm{m} 1.543 \quad$ P 313
OAD 150×29
AUS 10523
BRACKET fits 10018
kg/m 4.165 P 438
OAD 122×76.75

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

NOTE: Not all products are available ex-stock, check with your local branch for advice on availability.

AUS 8029

AUS 8422
AUS I 0523

AUS

NOTE: Not all products are available ex-stock, check with your local branch for advice on availability.
NB: CUSTOMERS ARE TO CONFIRM THAT THEIR BLADE HOLDERS WILL SUIT THE DIMENSIONS OF OUR ULLRICH LOUVRE bLADES BEFORE ORDERING. NO RESPONSIBILITY WILL BE TAKEN FOR THE SUPPLY OF ANY INCORRECT BLADES.

UA 3431
FRAME
kg/m 1.328 P 311
OAD 110×20
UA 3442
WEATHER BAR
$\mathrm{kg} / \mathrm{m} 0.437$ P 220
OAD 48.74×41.49
UA 5234
STORM LOUVRE
$\mathrm{kg} / \mathrm{m} 0.769$ P 328
OAD 80×59
UA 5442
FRAME
$\mathrm{kg} / \mathrm{m} 1.114$ P518
OAD 111.4×61
UA 5535
MULLION CLIP kg/m 0.399 P 174 OAD 60×6.25

UA 5536
MULLION
kg/m 0.724 P 307
OAD 60×28.5

UA 5535

UA 3442

UA 5234

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

[^5]

NB: CUSTOMERS ARE TO CONFIRM THAT THEIR BLADE HOLDERS WILL SUIT THE DIMENSIONS OF OUR ULLRICH LOUVRE bLADES BEFORE ORDERING. NO RESPONSIBILITY WILL BE TAKEN FOR THE SUPPLY OF ANY INCORRECT BLADES.

AUS 6445
120 mm SNAP IN kg/m 0.159 P 100 OAD 19×16.3

AUS 6446
120 mm HEAD
$\mathrm{kg} / \mathrm{m} 1.406 \mathrm{P} 671$
OAD 120×84
AUS 6447
120 mm JAMB
$\mathrm{kg} / \mathrm{m} 1.093$ P 532
OAD 120×54
AUS 6448
120 mm JAMB kg/m 1.389 P 661
OAD 120×84
AUS 6449
50mm FRAME No. 2 $\mathrm{kg} / \mathrm{m} 0.923$ P 440
OAD 84×50
AUS 6450
50mm FRAME No. 1
$\mathrm{kg} / \mathrm{m} 0.624$ P 316
OAD 50×47.05

DIAGRAMS ACTUAL SIZE UNLESS OTHERWSE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS APECIFCATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY
ulrichaluminum colto
Edition 16-2018

NOTE: Not all products are available ex-stock, check with your local branch for advice on availability.

NB: CUSTOMERS ARE TO CONFIRM THAT THEIR BLADE HOLDERS WILL SUIT THE DIMENSIONS OF OUR ULLRICH LOUVRE bLADES BEFORE ORDERING. NO RESPONSIBILITY WILL BE TAKEN FOR THE SUPPLY OF ANY INCORRECT BLADES.

DIE No

DESCRIPTION

UA 1037 EASY DUCT LID
UA 1038 EASY DUCT BASE

UA 1039 EASY DUCT BASE
UA 1040 CAVITY DUCT BASE
UA I04I DUCT DIVIDER
UA 1042 DUCT LID
UA 1043 DUCT BASE CHANNEL
UA 1593 DUCT LID
UA 1594 DUCT CHANNEL
UA 1595 DUCT CHANNEL
UA 1596 DUCT CHANNEL
UA 1597 DUCT CHANNEL
UA 1598 DUCT CHANNEL
UA 1600 DUCT CHANNEL
UA 1854 DUCT LID
UA 1867 DUCT LID
UA 1925 DUCT CHANNEL
UA 2046 DUCT CHANNEL
UA 2047 DUCT LID
UA 2530 DUCT BASE
UA 2531 DUCT LID
UA 4476 DUCT CHANNEL
UA 5045 DUCT CHANNEL
UA 5336 DUCT LID
UA 5337 DUCT LID
UA 5346 DUCT LID
UA 5917 DOUBLE DUCT CHANNEL
UA 5918 DOUBLE DUCT LID
UA 5928 DUCT LID
UA 6214 DUCT CHANNEL
UA 6382 DUCT CHANNEL
UA 7023 DUCT CHANNEL
UA 7024 DUCT LID
UA 7702 DUCT CHANNEL
UA 7446 DUCT CHANNEL
UA 7447 DUCT LID
UA 7778 DOUBLE DUCT CHANNEL

UA 1037

EASY DUCT LID (2C, 3C)
$\mathrm{kg} / \mathrm{m} 0.868$ P 329
OAD 136×10

UA 1038

EASY DUCT BASE (2C)
kg/m 1.449 P 559
OAD $|36 \times 4|$

UA 1039

EASY DUCT BASE (3C)
kg/m I. 668 P 645
OAD 136×41

UA 1040

CAVITY DUCT BASE
kg/m 0.949 P 432
OAD 84×44

UA 1041

DUCT DIVIDER
$\mathrm{kg} / \mathrm{m} 0.400$ P 196
OAD 46×22

UA 1042

DUCT LID
kg/m 0.412 P 207
OAD 62.5×19

UA 1043

DUCT BASE CHANNEL
$\mathrm{kg} / \mathrm{m} 0.307$ P 158
OAD 47×17

UA 2530

DUCT BASE
$\mathrm{kg} / \mathrm{m} 1.457$ P 612
OAD 120×45.2

UA 253I

DUCT LID
$\mathrm{kg} / \mathrm{m} 0.58 \mathrm{I} \quad$ P 354
OAD 120×30

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS APECIFCATION DRAWINGS OAD $=$ OVERALI DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1593

© ULLRICH ALUMINUM CO LTD

UA 5346
DUCT LID
kg/m 0.442 P 169
OAD 77.9×7.5

UA 5917
DOUBLE DUCT CHANNEL
kg/m 1.963 P 710
OAD 151×59
UA 5918
DOUBLE DUCT LID
$\mathrm{kg} / \mathrm{m} 0.402$ P 154
OAD 70.5×7.5
UA 6214
DOUBLE DUCT CHANNEL
kg/m 2.632 P 910
OAD 180×60
UA 6382
DUCT CHANNEL
kg/ml.413 P5II
OAD 80×80

UA 2046
DUCT CHANNEL (KMP26)
kg/m 1.802 P 586
OAD 120×62
UA 2047
DUCT LID (KMP26)
kg/m 0.639 P 259
OAD 120×5.6
UA 5928
DUCT LID (KMP20)
kg/m 1.046 P 310
OAD 143×7.13
UA 7702
DUCT CHANNEL (KMP20) kg/m 2.506 P 745
OAD 143×79.3

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS
SPECFICATION DRAWINGS OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 5918

DOUBLE DUCT LID
$\mathrm{kg} / \mathrm{m} 0.402 \quad$ P 154
OAD 70.5×7.5

UA 7446

DUCT CHANNEL
$\mathrm{kg} / \mathrm{m} 1.655 \quad$ P 613
OAD 108.1×80
UA 7447
DUCT LID
$\mathrm{kg} / \mathrm{m} 0.421 \quad$ P 162
OAD 74.45×7.5
UA 7778
DOUBLE DUCT CHANNEL kg/m 3.335 P 993
OAD 163×105.9

CAT 6A COMPLIANT

(Fibre Optic Cables)

UA 5918

UA 7778

UA 5918

DIAGRAMS ACTUAL SIZE UNLESS THERWISE INDICATED
AND NOT INTENDED AS SPECIFCATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 4476
DUCT CHANNEL (KPL05)
kg/m 3.169 P 855
OAD 153.67×108.96

UA 5928
DUCT LID (KPL05)
kg/m 1.046 P 310
OAD 143×7.13

UA $\mathbf{7 0 2 3}$
DUCT CHANNEL (KMP25)
kg/m 3.329 P 734
OAD 180×80
UA 7024
DUCT LID (KMP25)
kg/m I. 283 P 382
OAD 180×7.2

DIE No DESCRIPTION

UA 4528 STANDARD BOARD
UA 4532 WINDOW FLASHING
UA 4533 HEAD FLASHING
UA 4535 LOCATOR CLIP
UA 4862 BOARD STARTER
UA 4863 VERTICAL BOARD STARTER
UA 4917 TEE BOARD
UA 5059 TRADITIONAL BOARD
UA 5104 FULL CORRUGATE BOARD
UA 5831 SOFFIT CLIP BASE
UA 5832 SOFFIT 65 mm CLIP TOP
UA 5833 SOFFIT 30mm CLIP TOP
UA 6323 SCALLOPED JOINTERTOP
UA 63242 PIECE JOINTER BASE
AUS 6478 SHADOLINE FLAT BOARD
UA 6608 FEMALE SCALLOPED CORNER
UA 6609 MALE SCALLOPED CORNER
UA 6975 SHADOLINE BOARD
UA 7094 FEMALE FLAT CORNER
UA 7095 MALE FLAT CORNER
UA 7096 FLAT JOINTERTOP
UA 7401 INFINITY BOARD
UA 7726 SHADO 100 BOARD
UA 7837 FIN BOARD
UA 7868 SHADO 140 BOARD

UA 4528 UlltraClad STANDARD BOARD kg/m 1.003 P 501 OAD 190.5×15

UA 6975 UlltraClad SHADOLINE BOARD kg/m 1.167 P 562
OAD 205×15
Can be fitted VERTICALLY

UA 7401 UlltraClad
INFINITY BOARD kg/m 1.159 P 546
OAD 205×15
Can be fitted VERTICALLY
UA 7726 UlltraClad
SHADO 100 BOARD
kg/m 1.303 P 629
OAD 205.16×15
Can be fitted VERTICALLY
UA 7868 UlltraClad
SHADO 140 BOARD
$\mathrm{kg} / \mathrm{m} 1.274$ P 614
OAD 205.16×15
Can be fitted VERTICALLY

ALUMINIUM VERMIN STRIP OAD 120×20
Length 2400 mm
Square holes $5 \times 5 \mathrm{~mm}$
Code: ALVERMIN2.4

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS
OAD $=$ OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY

IAGRAMS ACTUAL SIZE UN

UA 4532 UlltraClad
WINDOW FLASHING
$\mathrm{kg} / \mathrm{m} 0.420 \quad$ P 214
OAD 65×18.5
UA 4533 UlltraClad
HEAD FLASHING $\mathrm{kg} / \mathrm{m} 0.497 \quad$ P 249
OAD 78.77×37.33
UA 4535 UlltraClad
LOCATOR CLIP
With Screws (Bags 100)
$\mathrm{kg} / \mathrm{m} 0.198$ P 105
OAD 35.8×13.9
UA 4862 UlltraClad
BOARD STARTER $\mathrm{kg} / \mathrm{m} 0.448 \quad$ P 228
OAD 94.5×15
UA 4863 UlltraClad
VERTICAL BOARD STARTER
$\mathrm{kg} / \mathrm{m} 0.554$ P 280
OAD 95×18.5
UA 583 I UlltraClad
SOFFIT CLIP BASE
$\mathrm{kg} / \mathrm{m} 0.416 \mathrm{P} 198$
OAD 70×15
UA 5832 UlltraClad
SOFFIT 65 mm CLIPTOP
$\mathrm{kg} / \mathrm{m} 0.367$ P 189
OAD 65×14
UA 5833 UlltraClad
SOFFIT 30mm CLIPTOP
$\mathrm{kg} / \mathrm{m} 0.215 \quad \mathrm{P} \| 19$
OAD 30×14
UA 7584 UlltraClad
JAMB / SILL CLIP
$\mathrm{kg} / \mathrm{m} 0.600 \quad$ P 222
OAD 75×18.5

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS
SPECIFICATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 5832

UA 7584
UA 5831

UA 4863
UA 4533

UA 4532

CORNER STAKE - PLASTIC

Fits 7584
Code: CLADSTAKECNR

UA 6323 UlltraClad SCALLOPED JOINTERTOP kg/m 0.338 P 184 OAD 63×13.9

UA 6324 UlltraClad 2 PIECE JOINTER BASE kg/m 0.536 P 269 OAD 100×17

AUS 6478 UlltraClad
SHADOLINE FLAT BOARD kg/m 1.207 P 599 OAD 205×15

UA 6608 UlltraClad FEMALE SCALLOPED CORNER kg/m 0.680 P 355 OAD 70.1×70.1

UA 6609 UlltraClad MALE SCALLOPED CORNER kg/m 0.594 P 300
OAD 71.3×71.3
UA 7094 UlltraClad FEMALE FLAT CORNER $\mathrm{kg} / \mathrm{m} 0.465 \quad \mathrm{P} 257$
OAD 45×45
UA 7095 UlltraClad
MALE FLAT CORNER
$\mathrm{kg} / \mathrm{m} 0.266 \mathrm{P} 147$
OAD 32.81×32.81
UA 7096 UlltraClad
FLAT JOINTER TOP kg/m 0.338 P 184
OAD 63×13.9

DIE No	DESCRIPTION	DIE No	DESCRIPTION
T2 SHOP FRONT		GENERAL SHOP FRONT	
UA 7558	SILL TRAY BASE	UA 1293	FLASHING
UA 7559	SILLTRAY	UA 1294	CORNER POST
UA 7560	HEAD / JAMB	UA 1298	FLASHING
UA 7561	FLAT SUPPORT INFILL	UA 1309	DOOR HANDLE
UA 7562	GLAZING ADAPTOR	AUS 8606	MULLION
UA 7563	POCKET FILLER	AUS 8607	FLUSH INFILL
UA 7564	GLAZING ADAPTOR		
UA 7565	SINGLE GLAZE ADAPTOR		
UA 7566	SILL / TRANSOM	COMMER	AL DOOR
UA 7567	CLOSER COVER		
UA 7568	EXTENDED TRANSOM / SILL	UA 1070	TOP RAIL
UA 7569	SLOPED GLAZING BEAD	UA 1300	HiNGE STILE
UA 7570	SLOPED GLAZING BEAD	UA 1301	WOOLPILE STILE
UA 7571	SINGLE GLAZING BEAD	UA 1302	PLAIN STILE
UA 7572	DOOR ADAPTOR	UA 1303	GLAZING BEAD
UA 7573	40mm DOOR ADAPTOR	UA 1304	VISION RAIL CAP
UA 7581	GLAZING BEAD	UA 1305	TOP TRACK
		UA 1306	BOTTOM RAIL
		UA 1307	BOTTOM TRACK
75mm SHOP FRONT		UA 1308	VISION RAIL
		UA 1310	WOOLPILE DOOR STOP
UA 1285	MULLION	UA 2369	STILE GUIDE
UA 1286	MULLION	UA 2370	STILE
UA 1287	GLAZING BEAD	UA 3922	GLAZING BEAD
UA 1288	MULLION	UA 4175	STILE
UA 1289	SILLTRANSOM	UA 4576	STILE
UA 1290	MULLION	UA 4577	HiNGE STILE
UA 1291	GLAZING INFILL	UA 4907	HINGE STILE
UA 1292	FLUSH INFILL	UA 4908	LOCK STILE
UA 1333	POCKET FILLER	UA 4909	TOP RAIL
		UA 4910	MID RAIL
		UA 4911	BOTTOM RAIL
100 mm SHOP FRONT			
UA 1291	GLAZING INFILL		
UA 1292	FLUSH INFILL		
UA 1295	MULLION		
UA 1296	GLAZING BEAD		
UA 1297	SILLTRANSOM		
UA 1299	MULLION		
UA 1333	POCKET FILLER		
UA 3088	PLAIN MULLION		
UA 3920	GLAZING INFILL		
UA 3921	GLAZING BEAD		
UA 3923	MULLION		
UA 3996	MULLION		
UA 4837	POCKET FILLER		
UA 4864	POCKET FILLER		

UA 7558
SILL TRAY BASE
$\mathrm{kg} / \mathrm{m} 0.617$ P 281
OAD 104.1×29.8
UA 7559
SILL TRAY
kg/m 1.225 P 454
OAD 119.6×60.4
UA 7560
HEAD / JAMB
$\mathrm{kg} / \mathrm{m} 1.528$ P 571
OAD 100×50

UA 7561
FLAT SUPPORT INFILL
$\mathrm{kg} / \mathrm{m} 0.792$ P 283
OAD 89×23.2

UA 7562

GLAZING ADAPTOR $\mathrm{kg} / \mathrm{m} 0.640$ P 301
OAD 89×23.2

UA 7563

POCKET FILLER $\mathrm{kg} / \mathrm{m} 0.144 \quad$ P 98
OAD 33.8×7.75
UA 7564
GLAZING ADAPTOR $\mathrm{kg} / \mathrm{m} 0.867$ P 416
OAD 100×30.2
UA 7565
SINGLE GLAZE ADAPTOR $\mathrm{kg} / \mathrm{m} 0.270$ P 158 OAD 25×16.5

UA 7561

UA 7565

UA 7563

UA 7559

UA 7558

IAGRAMS ACIUAL SLZE UNLESS
OTHERWSE INIICATED.
DAGRAMS ARE SCHEMATIC ONLI DIAGRAMS ARE SCHEMATIC ONL
AND NOT INTENDED AS AND NOTINTENDEAAS
SPECIFICATON DRAWINGS. OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1285
MULLION
kg/m $1.380 \quad$ P 499
OAD 76.2×44.5

UA 1286
MULLION
kg/m 1.779 P 313
OAD 76.2×44.5

UA 1287
GLAZING BEAD
kg/m 0.239 P 147
OAD 30.8×18.5

UA 1288
MULLION
kg/m 1.483 P 242
OAD 76.2×44.5

UA 1289

SILLTRANSOM kg/m 1.136 P 414 OAD 76.2×44.5

UA 1290
MULLION
$\mathrm{kg} / \mathrm{m} 1.074$ P 388
OAD 76.2×44.5
UA 1291
GLAZING INFILL $\mathrm{kg} / \mathrm{m} 0.719 \quad$ P 268 OAD 60.2×20.5

UA 1292
FLUSH INFILL
$\mathrm{kg} / \mathrm{m} 0.454$ P 169
OAD 60.2×6.7

UA 1333
POCKET FILLER
$\mathrm{kg} / \mathrm{m} 0.121 \quad \mathrm{P} 78$ OAD 16.5×12

DIAGRAMS ACTUAL SIZE UNLIESS OTHERWISE INDICATED DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS ANECIFICATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1292

FLUSH INFILL
$\mathrm{kg} / \mathrm{m} 0.454$ P 169
OAD 60.2×6.7

UA I296
GLAZING BEAD
kg/m 0.357 P 195
OAD 54.55×18.5

UA 1297
SILLTRANSOM
kg/m $1.650 \quad$ P 515
OAD 100×44.5

UA 3920
GLAZING INFILL $\mathrm{kg} / \mathrm{m} 0.710 \quad$ P 261 OAD 60.2×20.5

UA 3921

GLAZING BEAD kg/m 0.34। P 189 OAD 53.25×18.5

UA 3923
MULLION
kg/m 1.645 P 586
OAD 100×44.5
UA 4837
POCKET FILLER
If Anodised
$\mathrm{kg} / \mathrm{m} 0.141 \quad$ P 87
OAD 21.6×11.7

UA 4864
POCKET FILLER
If Powdercoated $\mathrm{kg} / \mathrm{m} 0.142 \mathrm{P} 88$ OAD 21.6×12

UA 1293

UA 1298

AUS 8607

UA 1294

UA 1309

UA 1293
FLASHING kg/m 0.567 P 257
OAD 95×33.5

UA 1294
CORNER POST
kg/m 1.720 P 602
OAD 76×76

UA 1298
FLASHING
kg/m 0.676 P 308
OAD 120×33.5

UA 1309
DOOR HANDLE
kg/m 1.817 P 331
OAD 89.6×49.8
AUS 8606
MULLION
kg/m 1.283 P 462
OAD 101.6×44

AUS 8607
FLUSH INFILL
$\mathrm{kg} / \mathrm{m} 0.532 \quad \mathrm{P} 221$
OAD 79.6×6.9

UA 1070
TOP RAIL kg/m 1.420 P 254
OAD 60×42

UA 1300
HINGE STILE
kg/m 1.132 P 219
OAD 51×44

UA 1301
WOOLPILE STILE
kg/m 1.161 P 222
OAD 51×44
UA 1302
PLAIN STILE
$\mathrm{kg} / \mathrm{m} 1.112$ P 217
OAD 51×44
UA 1303
GLAZING BEAD
$\mathrm{kg} / \mathrm{m} 0.167 \mathrm{P} 98$
OAD 14.8×13.6
UA 1304
VISION RAIL CAP $\mathrm{kg} / \mathrm{m} 0.447$ P I 58 OAD 42×15

UA 1305
TOPTRACK
kg/m 1.002 P 339
OAD 63×43
UA 1306
BOTTOM RAIL
kg/m 1.919 P 383
OAD 100×42
Takes Door Roller TRUKEG9407IO

UA 1308

VISION RAIL
kg/m 1.849 P 315
OAD 92×42
UA 1310
WOOLPILE DOOR STOP $\mathrm{kg} / \mathrm{m} 0.145 \quad$ P 75 OAD 18×13

dagrams actual size unless OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND Not intended as SPECIFICATION DRAWINGS.
OAD $=$ OVERALI DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1303
GLAZING BEAD $\mathrm{kg} / \mathrm{m} 0.167 \mathrm{P} 98$ OAD 14.8×14

UA 1307
BOTTOMTRACK kg/m 0.536 P 139 OAD 35×13

UA 2369
STILE GUIDE
$\mathrm{kg} / \mathrm{m} 0.141 \quad$ P 79
OAD 26.5×5.5
UA 2370
STILE
kg/m 1.302 P 261
OAD 51×44
UA 4175
STILE
kg/m 1.397 P 275
OAD 58×44

UA 4576
STILE
kg/m 1.896 P 349
OAD 95×44
UA 4577
HINGE STILE
kg/m 1.678 P 300
OAD 95×44
UA 4907
HINGE STILE
kg/m 1.494 P 294
OAD 68×44

UA 4908

LOCK STILE
kg/m 1.578 P 342
OAD 68×44

UA 3922
GLAZING BEAD $\mathrm{kg} / \mathrm{m} 0.157$ P 93
OAD 14.8×12
UA 4909
TOP RAIL
kg/m 1.436 P 288
OAD 74.1×42
UA 4910
MID RAIL
kg/m 1.925 P 360
OAD 114×42

UA 49II

BOTTOM RAIL
kg/m 1.830 P 408
OAD 112×42
Takes Door Roller
TRUKEG9407IO

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONIY AND NOT INTENDED AS
SPECIFICATON DRAWINGS OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

DIE No
DESCRIPTION

DESIGNER PARTITIONING SYSTEM

UA 7250
UA 725 I
UA $7252 \quad 13 \mathrm{~mm}$ GIB RECESSED STARTER
UA 7253 13mm GIB HEAD STARTER
UA 7254 RECESSED STARTER CAP
UA 7255
UA 7256
UA 7257
UA 7258
UA 7259
UA 7260
UA 7261
UA 7262
UA 7263
UA 7264 ADJUSTABLE DOOR STOP
UA 7265 DOOR STOP CAP
UA 7266 DOOR STOP CAP
UA 7267 GLAZING BASE
UA 7268 GLAZING BEAD
UA 7269 GLAZING BEAD
UA 7270 GLAZING BASE
UA 727I GLAZING BEAD
UA 7272 GLAZING BEAD
UA 7273 RECESSED GLAZING MULLION CAP
UA 7274 I3mm GIB RECESSED STARTER
UA 7275 RECESSED GLAZING MULLION CAP
UA 7276 DOOR TOP RAIL
UA 7277 SLIDING DOOR BOTTOM RAIL
UA 7278 GLAZING BEAD
UA 7279 GLAZING BEAD
UA 7280 DOOR SIDE RAIL
UA 728I SLIDE CAP
UA 7282 SLIDE INFILL - WOOLPILE
UA 7283 SLIDE INFILL - SIDE WOOLPILE
UA 7284 SLIDING DOOR TOP CHANNEL
UA 7285 DOOR SIDE CHANNEL
UA 7286 BOTTOM DOOR TRACK
UA 7287 DOOR CENTRE MULLION
UA 7742 104mm RECESSED GLAZING MULLION POST
UA 7743 132mm RECESSED GLAZING MULLION POST
UA 7785 RECESSED DOOR STARTER CAP
UA 7840 OFFSET GLAZING BASE

DIE No DESCRIPTION

DESIGNER 1000 PARTITIONING SYSTEM

UA 1034 GLAZING BAR BASE
UA 1035 GLAZING BEAD
UA 1046 DOOR PILLAR POST
UA 1047 PILLAR POST JAMB
UA 1181 FLAT BAR (Skirting)
UA 1313 DOUBLE GLAZING CAP
UA 1314 DOUBLE GLAZING BASE
UA 1315 DOOR JAMB CAP
UA 1316 DOOR JAMB
UA $1672 \quad 26 \mathrm{~mm}$ HEAD STARTER
UA 1788 DOOR JAMB
UA $1934 \quad 13 \mathrm{~mm}$ GIB LINING CAP
UA 2062 DOOR JAMB
UA 2400 GLAZING BAR MULLION
UA 3209 GLAZING BEAD
UA 4362 I 3 mm GIB HEAD STARTER
UA $4363 \quad 13 \mathrm{~mm}$ STARTER CAP
UA $4364 \quad 13 \mathrm{~mm}$ STARTER CAP
UA 654213 mm GIB HEAD STARTER

TOILET PARTITION SYSTEM

UA 1573 WALL MOUNT
UA 5949 18mm CAPPING
UA $6453 \quad 18 \mathrm{~mm}$ JOINTER
UA $6454 \quad 18 \mathrm{~mm}$ DOOR STOP CAP
UA 6455 18mm CORNER
UA 7025 I Imm INSERT
© Ullrichaluminum colto

UA 7250
I 3mm GIB HEAD STARTER
For 63.5 mm Steel Stud
$\mathrm{kg} / \mathrm{m} 0.93 \mid \quad \mathrm{P} 515$
OAD 104×37.3
UA 725 I
RECESSED STARTER CAP
kg/m 0.660 P 347
OAD 104×26

UA 7252

| 3 mm GIB RECESSED STARTER
For 63.5 mm Steel Stud
$\mathrm{kg} / \mathrm{m} 1.210 \mathrm{P} 617$
OAD 104×37.3
UA 7258
STARTER FLUSH CAP
If Powdercoated
$\mathrm{kg} / \mathrm{m} 0.203$ P 126
OAD 27.3×18.8

UA 7259

40mm DOOR STOP
If Powdercoated $\mathrm{kg} / \mathrm{m} 0.303 \mathrm{P} \mid 56$
OAD 29.14×27.3

UA 7260

50mm DOOR STOP
If Powdercoated
kg/m 0.303 P | 56
OAD 29.14×27.3
UA 7261
STARTER FLUSH CAP
If Anodised
$\mathrm{kg} / \mathrm{m} 0.210$ P 127
OAD 27.6×18.75

UA 7262

40mm DOOR STOP
If Anodised
kg/m 0.309 P 156
OAD 29.09×27.6
UA 7263
50 mm DOOR STOP
If Anodised
kg/m 0.309 P 156
OAD 29.09×27.6

UA 7267

GLAZING BASE
$\mathrm{kg} / \mathrm{m} 0.730$ P 373
OAD 104×26

UA 7268

GLAZING BEAD
If Powdercoated
$\mathrm{kg} / \mathrm{m} 0.324 \mathrm{P} \mid 84$
OAD 40×24.35

DIAGRAMS ACTUAL SIZE UNLESS OTHERWIE INDICATED. DIAGRAMS ARE SCHEMATIC ONL
AND NOT INTENDED AS SPECIFICATION DRAWINGS OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 7269

GLAZING BEAD
If Anodised
kg/m 0.327 P 186
OAD 40×24.35

UA 7273
RECESSED GLAZING MULLION CAP
$\mathrm{kg} / \mathrm{m} 0.898$ P 464
OAD 104×32.8

DIAGRAMS ACTUAL SIZE UN OTHERWISE INDICATED. IAGRAMS ARE SCHEMATC ONL
AND NOT INTENDED AS SPECIFCATION DRAWINGS oad = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 7256
16 mm GIB HEAD STARTER
For 92 mm Steel Stud
kg/m 1.048 P 581
OAD 138×37.3

UA 7257
RECESSED STARTER CAP $\mathrm{kg} / \mathrm{m} 0.798$ P 415
OAD 138×26

UA 7264
ADJUSTABLE DOOR STOP kg/m $0.56|\mathrm{P}| 32$
OAD 35×15

UA 7265
DOOR STOP CAP
If Powdercoated $\mathrm{kg} / \mathrm{m} 0.145 \mathrm{P} 98$ OAD 28×11.1

UA 7266

DOOR STOP CAP
IfAnodised
$\mathrm{kg} / \mathrm{m} 0.147$ P 98
OAD 28.3×11.06
UA 7268
GLAZING BEAD
If Powdercoated
$\mathrm{kg} / \mathrm{m} 0.324$ P 184
OAD 40×24.35

UA 7269
GLAZING BEAD
If Anodised
$\mathrm{kg} / \mathrm{m} 0.327$ P 186
OAD 40×24.35

UA 7270
GLAZING BASE $\mathrm{kg} / \mathrm{m} 0.836$ P 429 OAD 132×26

UA 7271
GLAZING BEAD If Powdercoated $\mathrm{kg} / \mathrm{m} 0.373$ P 212
OAD 54×24.35

UA 7272

GLAZING BEAD
If Anodised
$\mathrm{kg} / \mathrm{m} 0.376$ P 214
OAD 54×24.35

UA 7284

SLIDING DOORTOP GUIDE $\mathrm{kg} / \mathrm{m} 0.723$ P 285
OAD 50×40

UA 7285

DOOR SIDE CHANNEL $\mathrm{kg} / \mathrm{m} 0.561$ P 225
OAD 50×25

UA 7840
OFFSET GLAZING BASE
kg/m 0.858 P 428
OAD 132×26

UA 7278
or
UA 7279

UA 7742
104mm RECESSED
GLAZING MULLION POST
kg/m 2.310 P 490
OAD 104×66.73
UA 7743
132 mm RECESSED
GLAZING MULLION POST
kg/m 2.854 P 602
OAD 132×94.73

TAPERED FLUSH HINGE Anodised Silver Code: HFSAT

PARTITION GUSSET Mitre Corner, Vertical Code: PARTGUSS22.5 PKT 50

STEEL TRACK STUD $63.5 \times .55 \times 3000 \mathrm{~mm}$

SPLICE PLATE
Butt Joint Code: PARTSPLICE23

PKT 50

HEADSTARTER RESTRAINT BRACKET

STUD $63.5 \times .55 \times 2400 \mathrm{~mm}$ STUD $63.5 \times .55 \times 2700 \mathrm{~mm}$ STUD $63.5 \times .55 \times 3000 \mathrm{~mm}$ STUD $63.5 \times .55 \times 3300 \mathrm{~mm}$ STUD $63.5 \times .75 \times 3600 \mathrm{~mm}$

Code: PARTSTARTERBRKT BOX 20

STEEL STUD
STUD $92 \times .55 \times 3000 \mathrm{~mm}$ STUD $92 \times .55 \times 3600 \mathrm{~mm}$ STUD $92 \times .55 \times 4200 \mathrm{~mm}$

STEEL TRACK
STUD $92 \times 0.55 \times 3000 \mathrm{~mm}$

UA II8I
FLAT BAR (Skirting)
kg/m 0.305 P 59
OAD 25×4.5
UA 1315
DOOR JAMB CAP
$\mathrm{kg} / \mathrm{m} 0.100$ P 73
OAD 13.8×11.8

UA 1316
DOOR JAMB - 40mm Door kg/m 0.904 P 317
OAD 47×39

UA 1672

26mm HEAD STARTER For 63.5 mm Steel Stud $\mathrm{kg} / \mathrm{m} 1.131 \quad$ P 538 OAD 129×34.6

UA 1788

DOOR JAMB - 40mm Door kg/m 0.67I P 234
OAD 48×27.8

UA 1934

13 mm GIB LINING CAP $\mathrm{kg} / \mathrm{m} 0.353$ P 176
OAD 35.8×20

UA 2062

DOOR JAMB - 45mm Door kg/m 0.690 P 243
OAD 53×27

UA 4362

13 mm GIB HEAD STARTER
For 63.5 mm Steel Stud $\mathrm{kg} / \mathrm{m} 0.863$ P 492
OAD 104×37.3

UA 4363

13 mm STARTER CAP
If Powdercoated
$\mathrm{kg} / \mathrm{m} 0.389 \quad$ P 225
OAD 96.8×8.14

UA 4364

13 mm STARTER CAP
If Anodised
kg/m 0.391 P 227
OAD 97.6×8.14

UA 6542

13 mm GIB HEAD STARTER For 63.5 mm Steel Stud Negative Detail $\mathrm{kg} / \mathrm{m} 0.973$ P 553
OAD 104×49.3

UA 1315

UA 1934

UA 1672

UA 6542

UA 1314

UA 1034
GLAZING BAR BASE
kg/m 0.533 P 210
OAD 44×26

UA 1035
GLAZING BEAD
If Powdercoated
$\mathrm{kg} / \mathrm{m} 0.175$ P 120
OAD 21×14.5
UA 1046
DOOR PILLAR POST
kg/m 1.072 P 288
OAD 65×44
UA 1047
PILLAR POST JAMB - 40mm Door kg/m 0.354 P 138
OAD 47×14
UA 1313
DOUBLE GLAZING CAP
kg/m 0.253 P I 36
OAD 48.8×9.2

UA 1314
DOUBLE GLAZING BASE
kg/m 1.092 P 435
OAD I06×25.5 Infill 466
UA 2400
GLAZING BAR MULLION kg/m 0.786 P 295
OAD 45×44
UA 3209
GLAZING BEAD
If Anodised
$\mathrm{kg} / \mathrm{m} 0.178 \mathrm{P} 121$
OAD 21×14.5

P = EXT PERIPHR

UA 1573
WALL MOUNT
$\mathrm{kg} / \mathrm{m} 0.273 \quad$ P 148
OAD 25×25

UA 5949

18 mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.235 \mathrm{P} \mid 19$
OAD 21.6×20

UA 6453

I 8mm JOINTER
$\mathrm{kg} / \mathrm{m} 0.389 \quad \mathrm{P} 194$
OAD 38.5×21.6

UA 6454

18 mm DOOR STOP CAP $\mathrm{kg} / \mathrm{m} 0.304$ P 153
OAD 35×23. 1

UA 6455

18 mm CORNER
$\mathrm{kg} / \mathrm{m} 0.591 \quad$ P 225
OAD 40.1×40.1
UA 7025
11 mm INSERT
$\mathrm{kg} / \mathrm{m} 0.222 \quad$ P 107
OAD 21.6×13.6

UA 1573

UA 6453

UA 6455

ALUMINIUM FLAT BUTT HINGE
75 mm SATIN FINISH
Code: HA3S

UA 5949

UA 7025

UA 6454

UC 1914 PARTITION FOOT
PLATFORM HEIGHT: 150 mm

SURFACE MOUNT INDICATOR BOLT SET Code: $1 \mid 46$ |

DIE No
UA 1006
UA 1292
UA 1340
UA 1341
UA 1342
UA 1343
UA 1345
UA 1346
UA 1347
UA 1348
UA 1350
UA 1351
UA 1352
UA 1353
UA 1354
UA 1356
UA 1359
UA 1363
UA 1369
UA 1370
UA 1390
UA 1391
UA 1392
UA 1492
UA 1643
UA 1663
UA 1678
UA 1679
UA 1941
UA 1950
UA 1951
UA 1952
UA 2000
UA 2039
UA 2086
UA 2154
UA 2163
UA 2221
UA 2229
UA 225 I
UA 2462
UA 2482
UA 2483
UA 2516
UA 2589
UA 2667
UA 2759
UA 2852
UA 2899
UA 2906
UA 2996
UA 3006
UA 3016
UA 3151
UA 3219
UA 3266
UA 3267
UA 3268

DESCRIPTION

LADDER RUNG

FLUSH INFILL
LT7 DOOR CAP
SLIDING DOORTRACK
3 mm SPLITTEE
SLIDING DOORTEE
DOORTEE
TICKET HOLDER
TICKET HOLDER
TICKET HOLDER
CURTAINTRACK
CURTAINTRACK
GLASS SILL
GLASS TRACK Top GLASSTRACK Base
GLASS JOINTER
PICTURE FRAME
CUPBOARD PULL
HINGE
HINGE
STAKE ANGLE
SHOWER FRAME
SHOWER FRAME
SCALLOP MOULD
DRAWER PULL
F-SECTION
SHELF BRACKET
SHELF BRACKET
SKIRTING
DRAWER PULL
COLONIAL BEAD
COLONIAL BEAD
PICTURE FRAME
PICTURE FRAME
FLASHING
DOORTRACK
WORKSPACE POST
DOORTRACK
DOORTRACK
51 mm FLUTED COLUMN
TICKET HOLDER
TICKET HOLDER
TICKET HOLDER
CUSTOMWOOD INSERT
SHELF BRACKET Melteca
LADDER RUNG
LIPPED CHANNEL
SLATWALL INSERT
PLANK - DECK EXTENSION
DIN RAIL
LADDER RUNG
AWNING FRAME
4mm SPLIT TEE
ANGLE
CAPPING
HANGING FILE RAIL
ROLLER BLIND BAR
ROLLER BLIND BAR

DIE No
UA 3465
UA 3703
UA 3753
UA 3769
AUS 4048
UA 4130
UA 4353
UA 4382
UA 4473
UA 4587
UA 4588
UA 4592
UA 4650
UA 4651
UA 4779
UA 4980
AUS 5324
UA 5402
AUS 5570
UA 5641
AUS 5652
UA 5973
UA 601I
UA 6012
AUS 6272
UA 6341
AUS 6357
AUS 6427
AUS 6428

UA 7070 BULB TEE
UA 707I BULBTEE
UA 7237 RULER
UA 7713 DIN RAIL
AUS 8222 SILLTRACK
AUS 8288 STRUT CHANNEL
AUS 8582 SLAT SECTION

AUS 10052 F-BAR
AUS 10079 POST-I
AUS 10080 POST 2
AUS 1008I
AUS 10082
AUS 10134
AUS 10136
AUS 10180
AUS 10247
AUS 10274
AUS 10309
AUS 10413
AUS 10553
164° HONEYCOMB JOINER
UA $6430 \quad 65 \times 65 \mathrm{~mm} 2$-PIECE SQUARE
UA 6861 MIRROR MOUNT BASE
UA 6862 MIRROR MOUNT TOP

AUS 8446 LETTERBOX SECTION
AUS 10049 22mm GRATING END CAP
AUS 10050 22mm GRATING JOINER
AUS 1005 I 32mm GRATING JOINER

DESCRIPTION

TOE BOARD
TRACK
F-SECTION
SLIDING DOOR TEE
FRAME
GLASS CHANNEL
SHELF BRACKET
CONCRETE SCREED
BENCH SEAT TOP
SKIRTING
SKIRTING
PLANK
STAIR STRINGER
STAIR TREAD
HEX NUT
P-SECTION
19 mm CHANNEL
DROP SIDE HINGE
RIBBEDTUBE
PLANK
13 mm CHANNEL
ROLLER BLIND BAR
GLASS BLOCK FRAME
GLASS BLOCK LAYER
TOP TRACK
OFFSETTEE
RACK FRAME
106° HONEYCOMB JOINER
90° HONEYCOMB JOINER

22 mm GRATING JOINER
32 mm GRATING JOINER

POST-I RADIUS
POST-2 RADIUS
STRUT CHANNEL
H-SECTION
CORNER POST
SAILTRACK
CEILINGT-BAR
SQR POST
TOP TRACK
100 mm HALF ROUND

UA 1341
SLIDING DOORTRACK kg/m 0.083 P 37
OAD 12×7
UA 1342
3mm SPLIT TEE
$\mathrm{kg} / \mathrm{m} 1.035$ P 226
OAD 57×32
UA 1343
SLIDING DOORTEE
k/gm 0.173 P66
OAD 20.3×13.5
UA 1345
DOORTEE
$\mathrm{kg} / \mathrm{m} 0.146 \mathrm{P} 65$
OAD 15.8×19
UA 2154
DOORTRACK
$\mathrm{kg} / \mathrm{m} 0.143 \quad$ P 48
OAD 19×6

UA 2229
DOORTRACK
$\mathrm{kg} / \mathrm{m} 0.241 \quad$ P 95
OAD 25×22.8

UA 3016

4 mm SPLIT TEE
k/gm 1.039 P 226
OAD 57×32
UA 3769
SLIDING DOORTEE
$\mathrm{k} / \mathrm{gm} 0.364$ P 80
OAD 25.4×15.9
UA 6341
OFFSETTEE
k/gm 2.429 P 31I
OAD 100×56

UA 7070

BULB TEE
k/gm $1.447 \quad$ P 214
OAD 70×40
UA 7071
BULBTEE
$\mathrm{k} / \mathrm{gm} 1.086 \mathrm{P} \mid 85$
OAD 60×35
AUS 10274
CEILINGT-BAR
$\mathrm{k} / \mathrm{gm} 0.252$ P 144
OAD 36×36

UA 1343
UA 3769

UA 1341

UA 1345

UA 7070

UA 6341

INFILLS SOLD SEPARATELY

UA 2899
PLANK - DECK EXTENSION
kg/m 2.039 P 419
OAD 122.8×50

UA 4592
PLANK
kg/m 3.447 P 657
OAD 228×50 Infill 113
UA 5402
DROP SIDE HINGE
$\mathrm{kg} / \mathrm{m} 1.828$ P 221
OAD 90×28
AUS 10553
100 mm HALF ROUND
$\mathrm{k} / \mathrm{gm} 1.234 \mathrm{P} 311$
OAD 100×50

DIAGRAMS ACTUAL SIZE UN OTHERWISE INDICATED.
 AND NOT INTENDED AS
SPECIFCATION DRAWING OAD = OVERAIL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 1350
CURTAIN TRACKTop Fix $\mathrm{kg} / \mathrm{m} 0.082$ P 54
OAD 14.5×5.8
UA 135 I
CURTAINTRACK Side Fix $\mathrm{kg} / \mathrm{m} 0.125 \mathrm{P} 81$
OAD 17×12
UA 1359
PICTURE FRAME
$\mathrm{kg} / \mathrm{m} 0.28 \mathrm{I} \quad \mathrm{P} 143$
OAD 22.02×22.95

UA 2000

PICTURE FRAME
$\mathrm{kg} / \mathrm{m} 0.144$ P 86
OAD 16.3×13.1

UA 2039

PICTURE FRAME
$\mathrm{kg} / \mathrm{m} 0.164$ P 103
OAD 20.5×12.5
UA 2221
DOORTRACK
$\mathrm{kg} / \mathrm{m} 0.378 \quad$ P 178
OAD 30×25

UA 2759

LIPPED CHANNEL
$\mathrm{kg} / \mathrm{m} 0.345$ P 106
OAD 25×12.5
UA 2906
DIN RAIL
kg/m 0.353 P 141
OAD 35.5×13
UA 3006
AWNING FRAME
kg/m 0.38। P 127
OAD 23×23
UA 3703
TRACK
kg/m 0.116 P81
OAD 19.1×9.3

UA 4130

UA 2906

UA 7713

UA 2221

UA 6862

MIRROR MOUNTTOP
kg/m 0.166 P 83
OAD 27.03×12.3

UA 7713
DIN RAIL
kg/m 0.38। P 141
OAD 35.2×13.1

Qu EXI PERIPHERY

UA 6861

MIRROR MOUNT BASE
Takes stake 1379 (red)
$\mathrm{kg} / \mathrm{m} 0.218 \mathrm{P} \mid 16$
OAD 25×10.5

UA 1350
UA 1351

PLASTIC CURTAIN GLIDES

Available for: UA I 350, UA I 35 I
Code: CURGLIDESW CURENDSW

UA 2759

UA 6861
UA 6862

MIRROR MOUNT PLASTIC END CAPS
Available
Code:WIO4

UA 1292
FLUSH INFILL
kg/m 0.454 P 169
OAD 60.2×6.7
UA 1340
LT7 DOOR CAP
$\mathrm{kg} / \mathrm{m} 0.508$ P 254
OAD 65.5×43

UA 2163

WORKSPACE POST kg/m 2.309 P 463
OAD 51×45

UA 4980

P - SECTION
$\mathrm{kg} / \mathrm{m} 0.793 \quad \mathrm{P} 228$
OAD 76×38

UA 6011

GLASS BLOCK FRAME kg/m 0.917 P 428 OAD 80×40

UA 6012

GLASS BLOCK LAYER kg/m $0.459 \quad$ P 192
OAD 68.15×6.6
AUS 6272
TOP TRACK
kg/m 2. 156 P 357
OAD 94.8×50.8

UA 7237

RULER
$\mathrm{kg} / \mathrm{m} 0.507$ P 128
OAD 47.5×12.5
AUS 10413
TOP TRACK
kg/m 1.468 P 295
OAD 72.5×40

UA 1292

UA 2163

UA 7237
UA 1340

AUS 6272

UA 1006

UA 2667

UA 2483
UA 1348
UA 1347

UA 2462

UA 2996
UA 225 I

UA 1390

UA 2996
LADDER RUNG $\mathrm{kg} / \mathrm{m} 0.406$ P 96 OAD 27.7×25.7

UA I39I

UA 2667
LADDER RUNG $\mathrm{kg} / \mathrm{m} 0.356$ P 100 OAD 28×28

UA 1392

UA 2483
22 mm TICKET HOLDER $\mathrm{kg} / \mathrm{m} 0.110 \quad$ P 71 OAD 25×4.7

UA 2482

UA 1006
LADDER RUNG $\mathrm{kg} / \mathrm{m} 0.368 \quad$ P 96
OAD 28×28
UA 1346
28 mm TICKET HOLDER
$\mathrm{kg} / \mathrm{m} 0.172$ P 84
OAD 32×9

UA 1347

19mm TICKET HOLDER kg/m 0.069 P 53
OAD 21×3

UA 1348

29mm TICKET HOLDER kg/m 0.113 P76
OAD 32×3

UA 1369

HINGE
$\mathrm{kg} / \mathrm{m} 0.590$ P 115
OAD 49.2×14.5
UA 1370
HINGE
$\mathrm{kg} / \mathrm{m} 0.607$ P II 8
OAD 49.2×14.5

UA 1390

STAKE ANGLE fits 139 |
$\mathrm{kg} / \mathrm{m} 1.317$ P 223
OAD 35×35

UA 1391

SHOWERSCREEN FRAME kg/m 0.34। P 107
OAD 30.5×10.5

UA 1392

SHOWERSCREEN FRAME kg/m 0.430 P 136
OAD 25.5×25.5

UA 225

51 mm FLUTED COLUMN
$\mathrm{kg} / \mathrm{m} 0.622 \mathrm{P} \mid 59$
OAD 5I $\times 5$ I

UA 2462

50mm TICKET HOLDER
kg/m 0.762 P 265
OAD 52×48
UA 2482
35 mm TICKET HOLDER
$\mathrm{kg} / \mathrm{m} 0.154$ P 97
OAD 38.2×4.7
DIAGRAMS ACTUAL SIZE UNLLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTEDED AS
SPECIICATION DRAWINGS.
OAD = OVERAIL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY
© ULLRICH ALUMINIUM CO LTD

UA 1941
SKIRTING
kg/m $0.440 \quad$ P 219
OAD 100×4.2 Infill II
UA 3151
ANGLE
kg/m 2.307 P 437
OAD 185×40
UA 3267
BLINDS ROLLER
$\mathrm{kg} / \mathrm{m} 0.564$ P 156
OAD 40.7×40.35
UA 3268
BLINDS ROLLER
$\mathrm{kg} / \mathrm{m} 0.444$ P 119
OAD 33×32.8

UA 3465

TOE BOARD
$\mathrm{kg} / \mathrm{m} 1.821$ P 351
OAD 150×13
UA 4587
SKIRTING
$\mathrm{kg} / \mathrm{m} 0.414 \mathrm{P} 194$
OAD 80×5.2 Infill 12

UA 4588

SKIRTING
$\mathrm{kg} / \mathrm{m} 0.630 \quad$ P 294
OAD 130×5.2 Infill 12

UA 5973

ROLLER BLIND BAR
$\mathrm{kg} / \mathrm{m} 0.498 \quad$ P 143
OAD 39.8×39.8

UA 3465

UA 1941

UA 4587

UA 4588
UA 315I

UA 3268

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFCATION DRAWINGS.

UA 1663
7.9 mm F SECTION $\mathrm{kg} / \mathrm{m} 0.302$ P 100
OAD 23.8×15
UA 1678
16 mm SHELF BRACKET kg/m 0.859 P 251
OAD 60×50 Infill 4386

UA 1679

6 mm SHELF BRACKET $\mathrm{kg} / \mathrm{m} 0.505$ P 197 OAD 50×35 Infill 4386

UA 2086

FLASHING
$\mathrm{kg} / \mathrm{m} 0.225 \mathrm{P} 141$
OAD 40×38

UA 2589

17 mm SHELF BRACKET Melteca kg/m 0.86। P 252
OAD 61×50 Infill 4386

UA 3266

HANGING FILE RAIL $\mathrm{kg} / \mathrm{m} 0.389$ P 188
OAD 32×30
UA 3753
16 mm F - SECTION
$\mathrm{kg} / \mathrm{m} 0.426 \mathrm{P} \mid 34$
OAD 30×20

UA 4353

18 mm SHELF BRACKET
$\mathrm{kg} / \mathrm{m} 3.312 \quad$ P 454
OAD 136×102.59

UA 4779

HEX NUT
$\mathrm{kg} / \mathrm{m} 0.540$ P 59
OAD 19.48×17
AUS 5324
19 mm CHANNEL $\mathrm{kg} / \mathrm{m} 0.531 \quad$ P 198 OAD 38×24.5

AUS 5652

13 mm CHANNEL $\mathrm{kg} / \mathrm{m} 0.376$ P 167
OAD 32×19

diagrams actual size unless OTHERWSE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY DIAGRAMS ARE SCHEMATIC
AND NOT INTENDED AS
SPECIFITIONDA SNECIFCATON DRALINGS.
OAD = OVERALL DMENSION $\mathbf{P}=$ EXT PERIPHERY

AUS 8288

STRUT CHANNEL NUT Code: SCN

AUS 10050

22mm GRATING JOINER
$\mathrm{kg} / \mathrm{m} 0.798 \quad$ P 209
OAD 43×28.8
AUS 10051
32mm GRATING JOINER
kg/m 0.800 P 23I
OAD 43×38.55
AUS 10052
F - BAR
$\mathrm{kg} / \mathrm{m} 0.7 \mathrm{I} 3 \quad$ P 194
OAD 76.5×15
AUS IOI34
STRUT CHANNEL $\mathrm{kg} / \mathrm{m} 0.829$ P 208
OAD 41.3×25
AUS IOI36
H - SECTION
kg/m 0.412 P 207
OAD 50.7×28.8
AUS 10309
SQR POST Int Diam 42.4mm
kg/m 1.694 P 211
OAD 53.8×53.8

AUS 6427
$106^{\circ} \mathrm{HONEYCOMB}$ JOINER
kg/m $2.660 \quad$ P 409
OAD 69.59×67.63

AUS 6428
$90^{\circ} \mathrm{HONEYCOMB}$ JOINER
kg/m 1.426 P 352
OAD 50×50
AUS 6429
$164^{\circ} \mathrm{HONEYCOMB}$ JOINER
kg/m 1.371 P 303
OAD 68.53×31.01

AUS 8582
SLAT SECTION
kg/m 0.353 P 209
OAD 65×13
AUS 10079
POST- I
kg/m 1.469 P 356
OAD 90×50
AUS 10080
POST-2
kg/m 1.253 P 278
OAD 70×50

DIAGRAMS ACTUAL SIZE UNLESSS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONL AND NOT INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

IIAGRAMS ACTUAL SIZE UN

DIE No DESCRIPTION

WARDROBE - CAVITY

UA 1820 DOOR STILE
UA 1821 DOORTOP RAIL
UA 1822 DOOR BOTTOM RAIL
UA 1824 DOUBLETRACK
UA 1825 DOOR JAMB
UA 1848 COAT HANGER RAIL
UA 2590 DOUBLE HEAD
UA 2987 SLIDING DOORTRACK
UA 2988 SLIDING DOOR PELMET
UA 2999 TRIPLETRACK
UA 3000 TRIPLE HEAD
UA 3002 SINGLE HEAD
UA 3096 SINGLE DOOR TRACK
UA 3097 DOUBLE DOORTRACK
UA 3098 PELMET
UA 5147 DOORTRACK
UA 5I48 HANDLE CAP
UA 5149 HANDLE CAP
UA 5150 CAVITY JAMB
UA 7329 COAT HANGER RAIL

VEE GLIDE

UA 2027 HANGER RAIL
UA 2943 ANGLE
AUS/UA 6556 SHELF BRACKET
AUS/UA 6950 CHANNEL JAMB
AUS/UA 6951 COVER JAMB
AUS/UA 6952 RETURN JAMB
AUs/UA 6953 DOUBLE HEAD
AUS/UA 6954 DOUBLE SILL
AUS/UA 6955 TRIPLE HEAD
AUS/UA 6956 TRIPLE SILL
AUs/UA 6957 SASH RAIL
AUS/UA 6958 GRIP STILE
AUS/UA 6959 LIPPED STILE
AUS/UA 6969 LIPPED SASH RAIL
AUS/UA 6970 OVAL HANGER RAIL
AUs/UA 697I TRIM CHANNEL
AUS/UA 8560 CHANNEL JAMB
AUS/UA 8767 BOTTOM DOORTRACK

UA 1820
DOOR STILE
$\mathrm{kg} / \mathrm{m} 0.510 \quad$ P 176
OAD 31×24.5

UA 1821
DOORTOP RAIL
kg/m 0.35। P 167
OAD 22×20
UA 1822
DOOR BOTTOM RAIL
kg/m 0.663 P 315
OAD 55×22
UA 1824
DOUBLE TRACK
kg/m 0.549 P 261
OAD 61×22
UA 1825
DOOR JAMB
$\mathrm{kg} / \mathrm{m} 0.494 \quad$ P 247
OAD 65×33.5

UA 1848
COAT HANGER RAIL $\mathrm{kg} / \mathrm{m} 0.553$ P 277 OAD 57×52.5

UA 2590

DOUBLE HEAD
$\mathrm{kg} / \mathrm{m} 0.846$ P 403
OAD 68.6×37

UA 2999

TRIPLE TRACK
$\mathrm{kg} / \mathrm{m} 0.819$ P 388
OAD 102.1×22

UA 3000
TRIPLE HEAD
kg/m 1.296 P 563
OAD 102.1×37

UA 3002
SINGLE HEAD
$\mathrm{kg} / \mathrm{m} 0.566$ P 272
OAD 52.3×35.1

DIAGRAMS ACTUAL SIZE UNLESS

UA 1821

UA 1820

UA 1848

UA 1822

UA 1825

AUs/UA 6950
CHANNEL JAMB
kg/m 0.554 P 313
OAD 126×16
AUS/UA 695
COVER JAMB
$\mathrm{kg} / \mathrm{m} 0.510 \quad$ P 269
OAD 85.5×34.5
AUS/UA 6952
RETURN JAMB
kg/m 0.716 P 389
OAD 126.5×34

AUS/UA 6953

DOUBLE HEAD
$\mathrm{kg} / \mathrm{m} 0.702$ P 397
OAD 81.6×40

AUS/UA 6954
DOUBLE SILL
kg/m 0.592 P 277
OAD 82.1×25.2
AUS/UA 6955
TRIPLE HEAD
kg/m 1.247 P 634
OAD 122.5×50
AUS/UA 6956
TRIPLE SILL
$\mathrm{kg} / \mathrm{m} 0.898 \quad$ P 419
OAD 122.3×25.2

AUS/UA 6950

AUS/UA 6952

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFCATION DRAWINGS.
OAD $=$ OVERALL DMENSIONS

AUS/UA 6556

AUS/UA 697

UA 2943

AUS/UA 6959

AUS/UA 6957

AUS/UA 6969

AUs/UA 8560

\square

ACCESSORIES:

WVG300 DOOR ROLLER

Code: WARDVGBEARING

WVGI00 HEAD GUIDE

Code: WARDVGGUIDEWHPR

WVGI30WH OVAL RAIL BRACKET

Code: WARDVGOVALBKTWH

WA200CL 4mm GLAZING CHANNEL

Code: WARDVGGLASSFR

WVG200 STILE BUFFER STRIP

Code: WARDVGBUFFERFR
AUS/UA 8767

UA 2027

AUS/UA 6970

AUS/UA 6958

dIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONLY
AND NOT INTENDED AS
SPECIFICATION DRAWING
OAD = OVERALL DIMENSIONS
$\mathbf{P}=$ EXT PERIPHERY

TRACK AND PELMET SOLD AS INDIVIDUAL LENGTHS ONLY

BOXED SET OF COMPONENTS INCLUDES
2 CARRIAGES
2 END STOPS
1 BOTTOM GUIDE SET
1 SPANNER AND CLIP
SCREWS
OPTIONAL FIXING BRACKET EACH

ullrichaluminum col

DIE No

DESCRIPTION

UA 1310 DRAFT EXCLUDER
UA 1349
UA 1438 DRAFT EXCLUDER

UA 1521
THRESHOLD

UA 1522 DOOR SEAL BOTTOM

UA 1310
DRAFT EXCLUDER
$\mathrm{kg} / \mathrm{m} 0.145 \quad$ P 75
OAD 18×13
UA 1349
DRAFT EXCLUDER
$\mathrm{kg} / \mathrm{m} 0.123 \quad$ P 72
OAD 22×7.5

UA 1438
THRESHOLD
$\mathrm{kg} / \mathrm{m} 0.530 \quad$ P 239
OAD 70×9 Infills 4 |26, I I |
UA 1521
DOOR SEALTOP
$\mathrm{kg} / \mathrm{m} 0.197 \mathrm{P} 8 \mathrm{I}$
OAD 30.5×19

UA 1522
DOOR SEAL BOTTOM
kg/m 0.290 PII7
OAD 44.4×15

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATC ONLY AND NOT INTENDED AS SPECIFICATION DRAWING OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

INFILLS SOLD SEPARATELY

DIE No
 DESCRIPTION

SIGN FRAME

UA $1332 \quad 10 \mathrm{~mm}$ SIGN FRAME
UA $1366 \quad 6 \mathrm{~mm}$ SIGN FRAME
UA 1367 6mm SIGN FRAME
UA 1809 7mm SIGN FRAME
UA 19975 mm SIGN FRAME
UA 29827 mm SIGN FRAME
UA 3989 7mm SIGN FRAME
UA $3990 \quad 7 \mathrm{~mm}$ SIGN FRAME
UA 5948 3mm SIGN FRAME
UA 5966 6mm SIGN FRAME
AUS $8449 \quad 5 \mathrm{~mm}$ SIGN FRAME
AUS $8450 \quad 5 \mathrm{~mm}$ SIGN FRAME
AUS 8864 SIGN FRAME

STREET SIGN

UA 2032	POST - BLADE HOLDER
UA 2033	STREET SIGN BLADE
UA 2080	STREET SIGN BLADE
UA 2115	SIGN BLADE EXTRA
UA 2386	9mm POST ATTACHMENT
UA 3796	STREET SIGN BLADE
UA 5430	STREET SIGN BLADE
UA 5819	STREET SIGN BLADE
AUS 6490	BACKING CHANNEL
AUS 10229	SIGN BLADE
AUS 10230	SIGN BLADE

SIGN PANEL

UA 1513	STAKE
UA 1642	SQUARE HOLLOW
UA 5633	STAKE
UA 6596	4mm SIGN PANEL CAP
UA 6597	4mm SIGN PANEL JOINTER
UA 6598	4mm SIGN PANEL INT/EXT CORNER
UA 6599	4mm SIGN PANEL FRAME
UA 6694	4mm SIGN PANELTEE CHANNEL
UA 6695	4 mm SIGN PANEL ANGLE CHANNEL
UA 6696	4mm SIGN PANEL BOX FRAME
AUS 8109	SIGN PANEL ZED
AUS 8110	SIGN PANEL ZED
AUS 8111	SIGN PANEL ZED

UA 1809
7 mm SIGN FRAME kg/m 2.383 P 701
OAD 200×20

UA 1997
5mm SIGN FRAME kg/m 2.171 P627 OAD 180×25

UA 2982
7 mm SIGN FRAME $\mathrm{kg} / \mathrm{m} 2.388$ P 632 OAD 200×25

UA 5966
6 mm SIGN FRAME kg/m 1.116 P601 OAD 160.6×27.25

SIGN FRAME CORNER

(POLYPROPYLENE)
Fits UA 5966
Code: ULL 5966

UA 1332

UA 3990

UA 5948

UA 1332
10 mm SIGN FRAME
kg/m 1.479 P 559
OAD 170×25
UA 1366
6 mm SIGN FRAME
$\mathrm{kg} / \mathrm{m} 1.118 \quad$ P 412
OAD 102×25
UA 1367
6 mm SIGN FRAME $\mathrm{kg} / \mathrm{m} 1.443$ P 508
OAD 150×25
UA 3989
7 mm SIGN FRAME $\mathrm{kg} / \mathrm{m} 1.144$ P 427
OAD 100×25
UA 3990
7 mm SIGN FRAME $\mathrm{kg} / \mathrm{m} 1.522$ P 567
OAD 170×25
UA 5948
3mm SIGN FRAME
$\mathrm{kg} / \mathrm{m} 0.743$ P 366
OAD 52×23

UA 5430
STREET SIGN BLADE
kg/m 1.852 P 519
OAD 207.2×28
UA 5819
STREET SIGN BLADE kg/m 2.021 P 569
OAD 232.2×28
dIAGRAMS ACTUAL SIZE UNIESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWING OAD = OVERALLDIMENSIONS

AUS 6490
BACKING CHANNEL
kg/m 0.698 P 185
OAD 28.5×25.5
AUS 8449
5 mm SIGN FRAME kg/m 1.412 P 528 OAD 150×20

AUS 8450
5mm SIGN FRAME kg/m 2.360 P 672 OAD 200×21

AUS 8864
SIGN FRAME
kg/m 0.986 P 427
OAD 133.2×19
AUS 10229
SIGN BLADE
kg/m 1.962 P 448
OAD 199.45×19.05
AUS 10230
SIGN BLADE
$\mathrm{kg} / \mathrm{m} 1.665$ P 348
OAD 149.45×19.05

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONL AND NOT INTENDED AS SPECIFICATION DRAWINGS.
OAD $=$ OVERALI DIMENSIO $\mathbf{P}=$ EXT PERIPHERY
ULLRICH

UA 6596

UA 6597

UA 6598

UA 6694

UA 6599

UA 1513

UA 1642

UCI999 CAST BOX CORNER
Fits UA 6696

UA 1513
STAKE (green) fits 6694, 6695
kg/m 1.416 P 196
OAD 50×50

UA 1642
SQUARE HOLLOW
$\mathrm{kg} / \mathrm{m} 0.313$ P 102
OAD 25.4×25.4

UA 5633

STAKE (yellow) fits 6599
$\mathrm{kg} / \mathrm{m} 1.725$ P 352
OAD 50×49.5

UA 6596

4mm SIGN PANEL CAP
$\mathrm{kg} / \mathrm{m} 0.100$ P 55
OAD 15×7.2

UA 6597

4mm SIGN PANEL JOINTER
$\mathrm{kg} / \mathrm{m} 0.165 \quad$ P91
OAD 25×7.5

UA 6598

4mm SIGN PANEL INT/EXT CORNER
$\mathrm{kg} / \mathrm{m} 0.198$ P 103
OAD 18.95×18.75

UA 6599

4 mm SIGN PANEL FRAME
$\mathrm{kg} / \mathrm{m} 0.471 \quad \mathrm{P} 121$
OAD 32×19.7

UA 6694

4 mm SIGN PANEL TEE CHANNEL
$\mathrm{kg} / \mathrm{m} 0.342$ P 134
OAD 34.3×23.1

UA 6695

4 mm SIGN PANEL ANGLE CHANNEL
$\mathrm{kg} / \mathrm{m} 0.293$ P I I 0
OAD 23.1×22.3

UA 6696

4mm SIGN PANEL BOX FRAME
$\mathrm{kg} / \mathrm{m} 1.226 \quad$ P 429
OAD 65.8×65.8

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED.
AND NOT INTENDED AS
AND NOTINIENDED AS
OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY
Q ULlRICH Aluminum colto

Edition 16-2018

AUS 8109
SIGN PANEL ZED
$\mathrm{kg} / \mathrm{m} 0.276 \mathrm{P} \mid 31$
OAD 40×25.5
AUS 8110
SIGN PANEL ZED
kg/m 0.275 P 129
OAD 40×23.9

AUS 81II
SIGN PANEL ZED
kg/m $0.361 \quad$ P 171
OAD 60×25.5

DIAGRAMS ACTUAL SZZ UNLESS OTHERWISE INDICATED.
DIAGRAMS ARE SCHEMATIC ONII AND NOT INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY © Ullrich aluminium co lto

DIE No DESCRIPTION

BALUSTRADE

UA 1280
UA 1333
UA 1988
UA 2096 HANDRAIL CHANNEL
UA 2097
UA 2098
UA 2099
UA 2102
UA 2103
UA 2131
UA 2132
UA 2164
UA 2487
UA 3347
UA 3348 HIGHWAY HANDRAIL
UA 3349 RAILING
UA 3595 FLUSH CAP
UA 3596 HANDRAIL
UA 3597 BALUSTER
UA 3616 RAIL CHANNEL
UA 3617 GLAZING INSERT
UA 4007 POST
UA 4134 CHANNEL LID
AUS 4729 HANDRAIL
UA 4737 HANDRAIL
AUS 5115 HANDRAIL
AUS 5566 POST BASE
UA 6395 CHANNEL
AUS 6461 RAILING
AUS 6500 GLAZING POST
AUS 6501 GLAZING POST
AUS 6502 GLAZING POST CAP
UA 6585 POST
UA 7085 POST
UA 7086 GLAZING INSERT
UA 7087 FLUSH CAP
UA 7088 GLAZING BAR
UA 7089 GLAZING BEAD
UA 7090 HANDRAIL
UA 709I FIXING BLOCK
UA 7092 RAIL CHANNEL
AUS 8214 HANDRAIL
AUS 8233 HANDRAIL
AUS I0353 LADY WAIST HANDRAIL
AUS 10354 CIRCLE HANDRAIL
UA $10414 \quad 20 \mathrm{~mm}$ BALUSTER INFILL
UA $10415 \quad 100 \mathrm{~mm}$ BALUSTER SPACER
UA 10422 FEMALE HINGE
UA 10422 MALE HINGE
UA 10423 HEAVY DUTY RAIL
UA 10424 FLUSH INFILL
UA 10444 POST SPIGOT

DIE No DESCRIPTION

FENCING

UA 1212
UA 1225
UA 1855 FENCE SLAT
UA 2131 RAIL CHANNEL
UA 2132 RAIL INSERT
UA 2820 FENCE RAIL LID
UA 282I RAILING
UA 2822 FENCE RAIL
UA 3178 POST / RAIL
UA 3616 RAIL CHANNEL
UA 5489 RHS RAILING
UA 5949 18mm CAPPING
UA 6393 FENCE SLAT
UA 6394 FENCE SLAT
UA $6397 \quad$ IOmm SLAT INSERT
AUS 6506 FENCE SLAT I.2mm
AUS 6507 FENCE SLAT 1.4 mm
UA 6856 FENCE PANEL
UA 6857 TONGUE \& GROOVE PLANK
UA 6859 SLIDING GATE TRACK
UA 7092 RAIL CHANNEL
UA 7613 FENCE PANEL
UA 7654 FENCE RAIL CHANNEL
UA 7655 FENCE RAIL LID
UA 7656 FENCE PAILING
UA 7657 FENCE PAILING
UA 7694 FENCE PANEL
AUS 10615 SLAT CHANNEL
AUS 10616 SLAT INFILL Punched

UA $\mathbf{I} 280$
TOP RAIL STIFFENER kg/m 0.32I P 160
OAD 50×16
UA 1333
POCKET CAP
$\mathrm{kg} / \mathrm{m} 0.121 \quad \mathrm{P} 78$
OAD 16.5×12
UA 1988
RHS RAILING
kg/m 0.49। P 120
OAD 40×20

UA 3595

FLUSH CAP
$\mathrm{kg} / \mathrm{m} 0.165$ P 92
OAD 35.85×5.5

UA 3616

RAIL CHANNEL
kg/m 0.536 P 183
OAD 40×25
UA 3617
GLAZING INSERT
$\mathrm{kg} / \mathrm{m} 0.313 \quad \mathrm{P} 172$
OAD 35.85×20
UA 7086
GLAZING INSERT
kg/m 0.44। P 236
OAD 58.5×24.5
UA 7087
FLUSH CAP
kg/m 0.299 P 136
OAD 58.5×5.47

UA 7088

GLAZING BAR
$\mathrm{kg} / \mathrm{m} 0.415 \quad$ P 211
OAD 40×25

UA 7089

GLAZING BEAD
$\mathrm{kg} / \mathrm{m} 0.182 \mathrm{P} \mid 13$
OAD 18.7×12.9

UA 7090

HANDRAIL
$\mathrm{kg} / \mathrm{m} 0.964 \quad$ P 310
OAD 65×39
Cast End Cap UCI50 I

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY
© (Ullrichaluminium co lto

UA 3595

UA 10414

20mm BALUSTER INFILL
$\mathrm{kg} / \mathrm{m} 0.333$ P I73
OAD 35.85×20

UA 10423
HEAVY DUTY RAIL
kg/m 0.697 P 263
OAD 45×40

UA 10424
FLUSH INFILL
kg/m 0.186 P 102
OAD 40×5.85

UA 2096
HANDRAIL CHANNEL kg/m 0.392 P 187 OAD 38×25.4

UA 2097

CHANNEL LID $\mathrm{kg} / \mathrm{m} 0.161 \quad$ P 82 OAD 35×4

UA 2098

HANDRAIL
$\mathrm{kg} / \mathrm{m} 0.543$ P 233
OAD 50×40.95
Cast End Cap UCI987

UA 2099

GLAZING CHANNEL kg/m 0.555 P 265
OAD 38×25.4

UA 2102

GLAZING BAR
$\mathrm{kg} / \mathrm{m} 0.373$ P 189
OAD 34.75×24.5

UA 2103

GLAZING BEAD kg/m 0.121 P86
OAD 15×11.58

UA 2487

POST
kg/m I. 482 P 140
OAD 35×35
UA 3347
HANDRAIL BASE kg/m 1.144 P 275 OAD 113.22×10

UA 3348

HIGHWAY HANDRAIL
kg/m 1.729 P 428
OAD 120×50
UA 3349
RAILING fits 3347
kg/m 0.636 P II 6
OAD 50×25

UA 4134

CHANNEL LID
$\mathrm{kg} / \mathrm{m} 0.163$ P 94
OAD 40.75×3.5
UA 6395
CHANNEL
kg/m 0.250 P 136
OAD 40.75×14.7

DIAGRAMS ACTUAL SIZE UNI ESS OTHERWISE INDICATED dIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS SPECIFICATION DRAWING OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

UA 10422
FEMALE HINGE
kg/m 4.828 P 637
OAD 150.4×11.6

UA 10422

MALE HINGE
kg/m 4.828 P 637
OAD 150×6

[^6]

AUS 4729
HANDRAIL
kg/m 1.126 P433
OAD 70×43
AUS 5115
HANDRAIL
$\mathrm{kg} / \mathrm{m} 0.517 \quad$ P 234
OAD 57×34
AUS 5566
POST BASE
kg/m $11.49 \mid$ P 460
OAD 110.3×110

AUS 6461
RAILING
$\mathrm{kg} / \mathrm{m} 0.776 \quad$ P 192
OAD 75×16

AUS 6500
GLAZING POST
kg/m 1.718 P 259
OAD 50×50

AUS 6501
GLAZING POST
kg/m 2.000 P 329
OAD 50×50
AUS 6502
GLAZING POST CAP
$\mathrm{kg} / \mathrm{m} 0.168 \mathrm{P} 88$
AUS 6461

AUS 8214

AUS 8233

UA 1212
POST / RAIL
$\mathrm{kg} / \mathrm{m} 0.807$ P I 56
OAD 40×40

UA 3178

POST / RAIL $\mathrm{kg} / \mathrm{m} 1.488 \quad \mathrm{P} 194$ OAD 50×50

UA 5949

18 mm CAPPING
$\mathrm{kg} / \mathrm{m} 0.235 \quad$ P।I 9
OAD 21.6×20

UA 6856

FENCE PANEL
kg/m $1.161 \quad$ P 259
OAD 115×17

UA 6857

TONGUE \& GROOVE PLANK
kg/m 1.099 P 330
OAD 106.8×17

UA 7613

FENCE PANEL
$\mathrm{kg} / \mathrm{m} 0.647$ P 149
OAD 60×17

UA 7654

FENCE RAIL CHANNEL
$\mathrm{kg} / \mathrm{m} 0.546 \mathrm{P} \mid 8 \mathrm{l}$
OAD 40×20
UA 7655
FENCE RAIL LID
$\mathrm{kg} / \mathrm{m} 0.170$ P 84
OAD 33.19×5.2

UA 7656

FENCE PAILING
$\mathrm{kg} / \mathrm{m} 0.301 \quad$ P 77
OAD 20×20

UA 7657

FENCE PAILING kg/m 0.25। P 63
OAD 20×20

UA 7694

FENCE PANEL kg/m 1.253 P 279
OAD 125×17

DIAGRAMS ACTUAL SIZE UNLESS
OTHERWISE INDICATED DIAGRAMS ARE SCHEMATIC ONLY AIAGRAMS ARE ECHEMAIC
AND NOT INTENDED AS ANECLICCATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

AUS 6506

FENCE SLAT 1.2 mm $\mathrm{kg} / \mathrm{m} 0.496 \mathrm{P} 157$
OAD 65×16
AUS 6507
FENCE SLAT 1.4 mm
$\mathrm{kg} / \mathrm{m} 0.576$ P 157
OAD 65×16
AUS 10615
SLAT CHANNEL
$\mathrm{kg} / \mathrm{m} 0.276$ P 164
OAD 28×27
AUS 10616
SLAT INFILL Punched
$\mathrm{kg} / \mathrm{m} 0.250 \mathrm{P} \mid 5 \mathrm{I}$
OAD 24.6×23.8
Punched for AUS 6506, 6507

AUS 10616

AUS 6506

AUS 10615

AUS 6507

FENCE STYLES

F6

UC 1981
Fence Post Base Full

UC 1982
Fence Post Base 3/4

UC 1963
I/2 Modular Bracket

UC I948A
Gate Hinge Round Hole
-

UC 1983
Fence Post Base I/2

UC 1942
Modular Bracket

UC 1947
Gate Hinge Slotted

FENCE PANELS
Box rail
$40 \mathrm{~mm} \times 20 \mathrm{~mm}$ $40 \mathrm{~mm} \times 40 \mathrm{~mm}$
Uprights 20 mm tube
Length Any up to 2.5 m
Height Any up to 1.8 m
Caps Spear / Football / Button

FENCE POSTS

Box post $50 \mathrm{~mm} \times 50 \mathrm{~mm}$
Over $1.2 \mathrm{~m} \mathrm{75mm} \times 75 \mathrm{~mm}$
Gate post $100 \mathrm{~mm} \times 100 \mathrm{~mm}$
Capping Flat Cap

FIXINGS

Brackets Standard module Masonry module Flexi module
Posts Post foot

GATES

Custom fabricated in the colour and decorative design of your choice.

CAPS

A range of decorative cappings for fences and gates is available.

UAF 05

Button Top

UC I943, I944, I 940 Fence Cap
$50 \mathrm{~mm}, 75 \mathrm{~mm}, 100 \mathrm{~mm}$

UC 1948
Small Gate Hinge Blank

DIE No
 DESCRIPTION

UA 1371 FRAME 20 mm
UA 1372 FLANGED FRAME 20 mm
UA 1641 FLANGED FRAME 25 mm
UA 1642 FRAME 25 mm

UA 1371
FRAME 20 mm
$\mathrm{kg} / \mathrm{m} 0.283 \quad \mathrm{P} 76$
OAD 19×19

UA 1372
FLANGED FRAME 20 mm
$\mathrm{kg} / \mathrm{m} 0.318 \quad$ P 93
OAD 27.5×19
UA 1641
FLANGED FRAME 25 mm $\mathrm{kg} / \mathrm{m} 0.343$ P II 4
OAD 31.9×25.4

UA 1642

FRAME 25 mm
$\mathrm{kg} / \mathrm{m} 0.313 \quad$ P 102
OAD 25.4×25.4

Description

The Ullrich Modular Design System uses a tube-andjointer construction for DIY shelving, storage, desking and display.
Using a rubber mallet, the system can be assembled in minutes, ready for shelving and panelling of your choice.

The finished units are sturdy yet lightweight, can be disassembled for storage or transit, and can be rearranged or extended for changing circumstances.

Your choice of 20 mm or 25 mm profile can be powder-coated in your choice of colour. Jointer components are standardly available in black or white.

See the Modular Design System brochure for more details.

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND NOT INTENDED AS
SPECIFCATION DRAWING OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

2 WAY CORNER JOINTER

3 WAY T SHAPE JOINTER

4 WAY X SHAPE JOINTER

UA 1641

UA 1642

UA 1371

UA 1372

3 WAYY SHAPE CORNER JOINTER

4 WAY Y SHAPE JOINTER

5 WAY JOINTER

6 WAY JOINTER

CASTOR

END CAP

MOUNTING BRACKET

Preliminary planning

To simplify planning and assembly, minimise the number of different tube lengths for your construction to as few as possible.

Only four standard tube lengths are needed as the basis for many different types of construction.

In assembly, these modules conform to accepted ergonomic work-height standards for desks and benches, and generally cater for typical dimensions of home appliances, computers, office files and books.

Here, jointed selections of shorter modules combine in many different ways to equal the lengths of jointed longer tube modules. This offers multi-strata design flexibility, vertically and horizontally, to customise storage or workspace for maximum efficiency and economy, while ensuring even finished widths and heights in the assembled unit no matter how varied the internal construction.

This facilitates customised construction, for example, various sized filing compartments above or below a wider desktop, or construction of shelves of various widths, depths and heights to suit different sizes of books, displays or audio-video appliances in a wall unit.

Vertical panelling and hinged or sliding doors can be incorporated into any Modular Design System construction.

A multitude of designs from only four tube lengths (example)

How the tube modules work together for furniture that fits

One 875 mm module (with any two jointers) is equal to:

One 650 mm module and one 200 mm module (with any three jointers)

Two 425 mm modules (with any three jointers)

One 425 mm module and two 200 mm modules (with any four jointers)

Four 200 mm modules (with any five jointers)

Modular construction offers flush-fitting furniture with multiple storage options

DIE No DESCRIPTION

UA 2246
UA 2247
UA 2435
解

UA 2436
PALLET DECK
PALLET BEARER
PALLET DECK

UA 2246
PALLET BEARER (Cargon)
kg/m $5.461 \quad$ P 620
OAD 127×85

UA 2247
PALLET DECK (Cargon)
kg/m 2.844 P 704
OAD 200×25

UA 2435
PALLET BEARER
kg/m 2.918 P 435
OAD 150×60
UA 2436
PALLET DECK
kg/m 1.348 P 214
OAD 85×25

DIE No DESCRIPTION

STORM SHUTTER

UA 1055 WEDGE PIN
UA 1056 TOP CHANNEL
UA 1057 BOTTOM CHANNEL

ACCORDION STORM SHUTTER

UA 2916 STRIKE
UA 2917 LOCK
UA 2918 GUIDE
UA 2919 CHANNEL
UA 2920 WHEEL GUIDE
UA 2921 SHUTTER SLAT
UA 2922 SHUTTER END

UA 1055
WEDGE PIN
$\mathrm{kg} / \mathrm{m} 3.410 \mathrm{P} 221$
OAD 95×22

UA 1056
TOP CHANNEL
kg/m 0.81। P 315
OAD 70×49

UA 1057
BOTTOM CHANNEL
kg/m 0.626 P 244
OAD $8 \mathrm{I} \times 32$
ASSEMBLY DETAILS
Refer: 24-3

UA 1055

UA 1056

UA 1057

UA 2919

UA 2921

UA 2916

UA 2917

UA 2916

STRIKE
kg/m 0.899 P 423
OAD 89.72×53.65

UA 2917
LOCK
kg/m 1.040 P 489
OAD $\| 4.33 \times 55.4$

UA 2918

GUIDE
kg/m 0.806 P 400
OAD 80×40

UA 2919
CHANNEL
kg/m 0.606 P 302
OAD 83.3×41.5

UA 2920
WHEEL GUIDE
$\mathrm{kg} / \mathrm{m} 0.752$ P 360
OAD 80×34.5

UA 2921
SHUTTER SLAT
$\mathrm{kg} / \mathrm{m} 0.512$ P 255
OAD 104.37×12.37

UA 2922

SHUTTER END $\mathrm{kg} / \mathrm{m} 0.44 \mathrm{I} \quad$ P 214 OAD 69.29×29.49

ASSEMBLY DETAILS

Refer: 24-3

Above from top
Storm Shutter UA 1057 prepunching detail
Accordion Storm Shutter

dIAgRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATIC ONLY AND Not INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

STORM SHUTTER

ASSEMBLY: side view, scale I:2

EXTRUSIONTERMINOLOGY
PROPERTIES OF ALUMINIUM
COMPARATIVE CHARACTERISTICS AND APPLICATIONS
TOLERANCES AND MECHANICAL PROPERTY LIMITS THE STORY OF ALUMINIUM CONVERSIONTO COMPLETION HANDLING AND STORAGE TREATMENTS AND SURFACE FINISHES CLEANING ALUMINIUM SURFACES THE EXTRUSION PROCESS LINEAR CONVERSIONTABLES

Standard shape
 Exclusive shape

Standard
Non-standard
Section drawings
Visible face
External periphery

Total periphery

Factor

Circumscribing circle
Thickness ratio

Rod

Bar

Solid shape

Hollow shape

Semi-hollow shape

I. Weight

The specific gravity of aluminium is 2.7 , about one-third that of iron (7.9) and copper (8.9). The weight to strength ratio of aluminium makes it an ideal construction material for the transport industry - air, sea, road and rail - where its light weight contributes to energy saving, increased load capacity and speed. Aluminium is also used in large-scale construction of high-rise buildings, power transmission cables and towers.

2. Corrosion resistance

When aluminium is exposed to air, a thin oxidised film forms on the surface, which helps to protect the metal from further corrosion. Anodising treatment enhances corrosion resistance, and is used in building construction, joinery, household appliances and utensils.

3. Machinability

Aluminium can be easily fabricated into cast or forged shapes, foil, sheet, rod, tube and wire. It also displays excellent machinability and plasticity in bending, cutting and drawing. Aluminium is considered to be the best material for complex-sectioned hollow extrusion.

4. Strength

The tensile strength of pure aluminium is not high, but depending upon the alloy or temper, a strength of up to $60 \mathrm{~kg} / \mathrm{mm}^{2}$ can be achieved. You can choose the alloy with the most suitable strength characteristics you need according to your application. Some alloys are stronger than ordinary steel or even equal to special (alloy and treated) steels in tensile strength. While steel becomes brittle at low temperatures, aluminium increases in tensile strength. Because of its low modulus of elasticity, aluminium absorbs impact, and is used in potentially high-impact applications such as automobile bumpers.

5. Expansion

Aluminium extrusions have a comparatively high coefficient of expansion which is 0.000023 mm per mm length of extrusion per ${ }^{\circ} \mathrm{C}$. A length of aluminium extrusion 6 m long will expand over 4 mm when the temperature rises $30^{\circ} \mathrm{C}$. When designing, especially building design, provison should be made for expansion and contraction caused by temperature changes. Thermal expansion is particularly important where aluminium extrusions are used with other materials having different expansion rates.

6. Surface enhancement

Aluminium can be thermoset powdercoated or electrochemically anodised surfacetreated for enhanced protection and appearance. A wide range of colours are available. Aluminium is thus widely used for interior and exterior cladding of buildings and vehicles, and the fabrication of household and commercial appliances.

7. Electrical conduction

The electrical conductivity of aluminium is approximately 60% of copper yet about onethird the weight. Aluminium is a very economical material as an electrical conductor and is widely used in power-transmission cables, bases of electric bulbs and other electrical applications.

8. Heat conduction

Aluminium is about three times as thermo-conductive as steel. It is used for cooking utensils, air-conditioners, industrial heat exchangers, automobile engine parts and solar energy collectors.

9. Magnetic sensitivity

Aluminium is non-magnetic and is used where the use of magnetic metals would be detrimental to equipment performance, such as in the construction of compasses, parabolic antennae, computer disks and other magnetically driven applications.

10. Reflectivity

The surface of uncoated aluminium is highly reflective of light, radiant heat and electronic waves - the purer the metal, the more so. This feature is utilised in mirrors and reflectors for stoves, infrared dryers, lighting equipment, light-wave-guides and in building temperature control.

I I. Recyclability

Owing to its low melting temperature, aluminium is economically recyclable, requiring only about 3.5% of the energy required for smelting. Use of recycled aluminium has benefits for all concerned with conservation of energy and natural resources.

Alloy Characteristics

1350 Commercially pure, very ductile in extruded condition. Excellent resistance to corrosion. Excellent electrical conductivity

6060 Suitable for intricate sections of light and medium strength. Forms well in T4 temper. High corrosion resistance, good surface finish, anodises well

6106 Light structural alloy. Designed to provide optimum mechanical properties, complexity of shape, minimum section thickness and good surface finish. Good corrosion resistance, weldability and formability

6005A Medium structural alloy. Good extrusion characteristics with good surface finish.

626 I Special purpose structural alloy. Good surface finish and corrosion resistance. Good formability in T4 temper. Good weldability.

6082 Recommended alloy for structural purposes. Good strength and general corrosion resistance. Good weldability.

Available Forms Applications

Simple shapes Mouldings, lightly stressed and

 decorative assemblies in architecture and transport, chemical, food and brewing equipment, heat exchangersAll shapes, tubing and rod

Thinner structural shapes, rod, bar and tubing

Structural shapes of all types, rod, bar and tube, offered in T5 temper

Structural shapes of all types, rod, bar and tube, offered in T 6 temper

Medium structural applications, where surface finish is important. Marine, Transport applications

Structural applications where surface finish is important. Marine, Transport applications Structural shapes of all types, rod, bar and tube, offered in T6 temper

Vehicles, bridges, roof trusses and general structural applications

201 Free machining alloy of medium strength, giving fragmented chips. Not suitable for anodising or welding.

Automatic lathe products, suitable for high speed repetitive machining

DIAGRAMS ACTUAL SIZE UNLLESS

Description of Tempers

F Extrusions as fabricated
O Extrusions annealed
TI Cooled from elevated temperature then naturally aged
T4 Solution heat treated then naturally aged
T5 Cooled from elevated temperature then artificially aged
T6 Solution heat treated then artificially aged

EXTRUSIONTOLERANCES

Applicable manufacturing tolerances are those set out by the Aluminium Development Council of Australia Ltd (ADCA) in Aluminium Standards, Data and Design: Wrought Products (First Edition 1994). Invariably, tolerances for an individual geometric shape are subject to negotiation and agreement between extruder and customer. Under this provision, the function of the shape in its specific application is given priority consideration. All manufacturing tolerances are subject to review from time to time.

Dimension tolerances (rounded down')

Cross- sectional
ADCA
Tolerance
mm
mm

Up to 3	0.15
3 to 6	0.18
6 to 12	0.20
12 to 20	0.23
20 to 25	0.25
25 to 40	0.31
40 to 50	0.36
50 to 100	0.61
100 to 150	0.86
150 to 200	1.12
200 to 250	1.37

I. Dimensional tolerances are rounded down to the nearest 0.05 mm because all calipers used to measure metal dimensions are almost universally graduated at intervals of 0.05 mm
2. Metal dimensions refer to solid metal dimensions or any measurement unbroken by a gap or void. For tolerances across gaps or voids refer to ADCA Standards.

USEFUL FORMULAE
Nominal mass ($\mathrm{kg} / \mathrm{m}^{2}$) of Extruded Aluminium:

Calculate cross-section area
(mm^{2}) and multiply by 0.00271

Factor

(Difficulty of Extrusion Factor)

Calculate the perimeter of the section (for hollow sections, both outside and inside perimeters) and divide the result by the nominal mass (kg / m) of the section.

Weight of Billet

Billet, 178 mm diameter $1 \mathrm{~mm}=0.0666 \mathrm{Kg}$

Billet, 202mm diameter $1 \mathrm{~mm}=0.0875 \mathrm{Kg}$

MECHANICAL PROPERTY LIMITS - EXTRUDED PRODUCTS

Alloy - Temper	Thickness' (mm)		Tensile Strength (MPa)		
	Over	Up to	Ultimate minimum	Yield minimum	Elongation ${ }^{23}$ $\% \mathrm{~min}$ in 50 mm or 5.65邓-A
$1350-\mathrm{HI} \mathrm{I}_{2}$		All	60		23
6060 -T5		12.0	150	110	8
	12.0	25.0	145	105	6
6106-T6		10.0	235	210	8
	10.0	25.0	205	170	8
	25.0	150.0	185	160	10
6005A -T5		All	260	240	8
6261-T6		All	295	255	7
6082 -T6		20.0	295	255	7
	20.0	150.0	310	270	7

I. The thickness of the cross-section or wall thickness from which the tension specimen is taken determines the applicable mechanical properties.
2. For material of such dimensions that a standard test specimen cannot be taken, or for material thinner than 1.6 mm the test for elongation is not required.
3. $\mathrm{A}=$ specimen cross-sectional area.
4. These yield strengths are not determined nor guaranteed unless specifically requested.

Source: Aluminium Standards, Data and Design: Wrought Products (ADCA First Edition1994)

DISCOVERY AND DEVELOPMENT

The art of pottery making was developed in northern Iraq about 5300 BC . The clay used for making the best pottery consisted largely of a hydrated silicate of aluminium. Certain other aluminium compounds known as alums were widely used by the Egyptians and Babylonians a early as 2000 BC in vegetable dyes, various chemical processes and for medicinal purposes. It was generally known as metal of clay and for thousands of years could not be separated by any known method from its link with other elements. As relatively late as 1782 the French chemist, Lavoisier, said it was the oxide of an unknown metal.

Aluminium, as we understand it, was isolated early in the 19th century, and is in historical terms a relatively recently discovered metal. Lavoisier's opinion was repeated by Sir Humphrey Davy in 1808 . He gave it the more scientific sounding name aluminum (pron: aloominum). His spelling is still used in North America but elsewhere in the world the spelling aluminium, following the suggestion of Henri Sainte-Clair Deville, is used. In 1809 Davy fused iron in contact with alumina in an electric arc to produce an iron-aluminium alloy. For a split second, before it joined with the iron, aluminium existed in its free metallic state for perhaps the first time since our planet was formed. In 1825 H C Oerstedt, a Dane, produced a tiny sample of aluminium in the laboratory by chemical means.

Twenty years later the German scientist, Frederick Wohler, produced aluminium lumps as big as pinheads. In 1854 Sainte-Clair Deville had made improvements to Wohler's method and produced aluminium globules the size of marbles. He was encouraged by Napoleon III to produce aluminium commercially and at the Paris exhibition in 1855 aluminium bars were exhibited next to the crown jewels. It was not until 3 I years later however, that an economical way of commercial production was discovered.

On 23 February 1886, a 22-year-old American, Charles Martin Hall worked out the basic electrolytic process still in use today. Hall had begun his experiments while still a student at Oberlin College, Ohio. He achieved his success, after graduation, with home-made apparatus in the family woodshed. He separated aluminium from the oxygen with which it is chemically combined in nature by passing an electric current through a solution of cryolite and alumina.

Almost simultaneously, Paul LT Heroult arrived at the same process in France, although he did not initially recognise its importance in his work in development of aluminium as an alloy-only material. In 1888 the German chemist Karl Joseph Bayer was issued a German patent for an improved process for making Bayer aluminium oxide (alumina).The foundation of the aluminium age was complete. The Bayer, Hall and Heroult processes freed our planet's most plentiful and versatile structural element for widespread use.

ORIGINS

Aluminium is a metallic element that comes from the ore bauxite. Aluminium is one of about 100 basic elements out of which the physical universe is built. In other words, it was created billions of years ago when the whirling clouds of hydrogen under constant pressure with electro-magnetic forces collided to form new elements. When Earth's mass cooled, aluminium mixed with water and oxygen to form the original matter from which bauxite is made. Bauxite is named after Les Baux, France, where it was discovered in 1821 .

Converted to aluminium by modern processes, it becomes a light metal which can be given great strength by alloying with other metals. It is inherently corrosion-resistant, conducts heat and electricity, yet can be processed to reflect light and radiant energy. Aluminium is classified non-toxic. It is non-magnetic. It can be formed by all known metalworking processes. Its intrinsic properties make it able to be used in many circumstances where other materials would not be considered.

DIAGRAMS ACTUAL SIZE UNLESS

HOW ALUMINIUM IS MADE

Bauxite is mined by various processes. Once mined it is finely crushed for refining and recovery of alumina, the base from which aluminium is made. The separation of the alumina from bauxite is a complicated process. This involves the use of a caustic soda solution heated under pressure to dissolve the alumina. Impurities are filtered out of the solution in the form of a mud-like material. The filtered solution is cooled and alumina is recovered by precipitation in a hydrate form. The resulting fine crystals are heated in long, revolving kilns to drive off the water of crystallisation.

The product is alumina in a white powder form. Aluminium metal is produced in large steel shells lined with carbon. These shells are known in the industry as pots and are arranged in long rows called pot lines. Alumina is mixed with cryolite in the pots and large quantities of electricity are introduced to reduce the alumina into aluminium and oxygen. The process is continuous and molten metal is siphoned from the pots at regular intervals.

HOW ALUMINIUM ISTURNED INTO PRODUCTS

Once aluminium is produced it can be made into forms ready for manufacturers to convert into finished products. Industries requiring aluminium may specify from a range of alloys and their metal can be supplied in the form of ingots, extruded shapes, rod, tube, bar, sheet, plate and foil.

One of the best known forms of aluminium is sheet, which has many applications. The process starts with special alloy ingots. These are pre-heated to rolling temperature, then fed into a hot mill with the ingot being passed back and forth through the mill. The process results in plate, with thinner sheet being formed by further passes between rolls under extreme pressure. It becomes longer and thinner in the direction in which the plate or sheet is moving.

Perhaps the most remarkable of all sheet forms is foil, which is aluminium metal that has been rolled very thin so that it is pliable yet strong. Aluminium foil is widely used in kitchens and food packaging.

Aluminium extrusions have been used commercially for many years. The process involves a heated billet being pushed under extreme pressure through a die, the metal taking the shape of the holes in the die. Extrusions are mostly used to reduce the weight or number of parts in an assembly, or to achieve shapes that cannot be produced satisfactorily any other way.

THE USES OF ALUMINIUM

The characteristics of aluminium combine to make aluminium a most versatile material for a host of applications.

Window frames	Kitchen utensils	Vehicle engines	Tanks and piping
Door frames	Kitchen whiteware	Aircraft engines	Tubing and ducting
Joinery fittings	Laundry whiteware	Outboard motors	Reflector panelling
Roofing	Air conditioners	Motor mowers	Armature windings
Gutters	Tubular furniture	Airframes and skins	Wiring and cabling
Spouting	Electrical fittings	Vehicle trim	Treadplate
Wall cladding	Light fittings	Truck canopies	Wall framing
Foil insulation	Household appliances	Coach bodies	Office furniture
Roller doors	Food containers	Railcar bodies	Office equipment
Insect screens	Wrapping foil	Caravan bodies	Decorative ceilings
Venetian blinds	Cans and closures	Boat hulls and trim	High-rise mullions
Awnings, louvres	Computer parts	Transport containers	Sign frames, panels
Fencing	Sports equipment	TV receiver aerials	Partition systems
Balustrading	Leisure furniture	Flag Poles	Security grills

Aluminium is one of the easiest materials to keep in good condition. It has a high natural resistance to corrosive conditions normally encountered during shipment and storage, and a little care will maintain its original appearance for a long time. Generally, guard against conditions that may cause surface abrasion or water stains. Suppliers make every effort to pack aluminium so that traffic marks or rub marks do not occur during shipment and so that it remains dry. All incoming shipments should be inspected promptly however, since suppliers generally have a time limit in which damage claims will be honoured.

TRAFFIC MARKS

Appearance: Scratches, surface abrasions, or a condition resembling cinders embedded in the metal. They result from mechanical abrasion and subsequent oxidation of the abraded areas, which is unsightly and has a detrimental effect on finishing operations.

Prevention and treatment: Suppliers usually pack metal so that it is not subjected to undue flexing or twisting and so that the units within a package do not rub against each other. Products subject to such damage are usually packed on skids or in timber boxes. Paper or cardboard may be used for cushioning thin or soft metal. Steel strapping is used to reinforce skids and boxes and to bind wrapped bundles. In storage, do not place aluminium with other metals. Use wood-faced shelving, racks and bins. Store away from caustics, nitrates, phosphates and acids. Use older stock first.

WATER STAINS

Appearance: Non-metallic, usually whitish, perhaps iridescent depending upon the alloy or degree of oxidation. Caused by the entrapment of moisture between adjacent surfaces of closely-packed material. Purer aluminium alloys are more resistant to water stain, usually more pronounced on alloys with high magnesium content. It is a superficial condition and the mechanical properties of the metal are not affected.

Prevention and treatment: If a shipment of metal arrives in wet condition, dry thoroughly before storing - evaporate moisture in air or dry air currents. When the moisture is removed shortly after the metal becomes wet, no stain will result. If stain has occurred, and the moisture causing it is not removed, the stain will develop further. Once dry, store the metal away from such obvious water sources as steam and water pipes, and reasonably away from open doors and windows.

Condensation is perhaps the most troublesome cause of water stains. In severe cases, it may also cause surface deterioration which may only become apparent when the metal is later etched and anodised. Prevent it by avoiding conditions where airborne moisture increases enough to carry the dew point above the metal temperature. Ensure that a sudden fall in temperature or increase in humidity does not occur in storage areas. Aluminium packed in original boxes should never be left in the open, because greater variations in outdoor temperature and humidity increase the possibility of condensation. Even if the package is wrapped in water-resistant paper, the impossibility of obtaining a perfect seal makes outdoor storage highly undesirable. So-called waterproof packages are designed solely for the protection of the metal during shipment and are not meant to withstand extended exposure to the weather.

Try to store cold metal in a dry storage area until its temperature has increased substantially before bringing it into a heated areas with higher humidity. Place new shipments in temporary storage where their temperature is raised slowly to that of the permanent storage room.

Where water stains have occurred, the degree of staining may be judged fairly accurately by the relative roughness of the stained area. If the surface is fairly smooth overall, the stain is superficial, and its appearance can be improved by mechanical or chemical treatments. Scratch-brushing or the use of steel wool and oil is effective in removing water stain. If a chemical dip without undue etching is preferred, an aqueous solution containing 10% by volume of sulphuric acid and 3% by weight of chromic acid at about $10^{\circ} \mathrm{C}$ may be used.

ANODISING

The capacity of aluminium to respond to anodising, the most familiar of finishes, makes aluminium a most important metal in a fundamental way. The fact that aluminium can accept this attractive, durable and tough-wearing finish makes it possible to exploit its strength and lightness in a large number of applications, particularly in building construction.

Anodising is essentially an induced thickening of the natural protective oxide film on the metal's surface. It converts the surface of the parent metal, not a 'coating' in the usual sense. Unless severely deformed or stressed by excessive thermal movement, the anodic film will not chip, peel or crack. With conventional sulphuric acid anodising, anodised alloys produce a clear, hard and extremely corrosion-resistant film capable of being coloured. The functional and decorative potential this offers is widely used in applications ranging from building components to domestic cookware. Varying the conventional electrolyte composition, combined with process variables, produces anodic finishes with distinctive functional properties. Thus, very hard anodic films are developed for abrasion-resistant surfaces on gears, pistons, bearings and similar components.

Anodic films can be coloured in many ways. Conventional sulphuric acid films are microscopically porous and organic or inorganic dyes and pigments may be sealed in the film. Very durable coloured films used for exposed environments are usually produced integrally and permanently with the evolution of the anodic layer. Whether anodising is clear or coloured, it is important that designers understand its essential nature. Inevitably, the anodic film reproduces the physical nature of the original metal surface. This means that any mechanical finish applied previously to the surface will be evident, and the characteristics of different metal forms will persist.Thus, extruded and sheet metal, if colouranodised to the same specification and placed together, will show an apparent colour difference due solely to minor but characteristic differences in surface profile peculiar to their individual mill processes.

The basic anodising process consists of a suitable chemical pre-cleaning dip, followed by etching in a caustic soda base solution, anodising electrolytically in sulphuric acid or other solution and finally sealing to reduce porosity. The finished anodised surface is in fact an inert, and therefore protective, film of aluminium oxide. The thickness of the aluminiumoxide anodising is varied by processing time to suit its application. The following guide quotes minimum figures, film thickness being checked on a batch basis by electronic means.

I2 micron:	Common Standard for internal and outdoor applications where cleaning is frequently required.
$\mathbf{1 5}$ micron:	General architectural requirement.
$\mathbf{2 5}$ micron:	Heavy duty external architectural or marine applications where little deterioration can be tolerated.

Colour finishes are checked for accuracy against standards, and tested for leaching by immersion in a boiling 0.1% borax solution.

THERMOSET POWDERCOATING

The application of thermoset powdercoatings on aluminium has increased dramatically. The wide variety of powder types now available in the process allow the engineer or architect to specify powdercoating for a wide variety of applications with confidence. Polyester thermosetting powder is the most commonly specified product because of its excellent resistance to natural weathering, a high degree of chalk resistance and colour fastness, high levels of mechanical properties and good chemical and corrosion resistance.

Standard colour ranges provide ample choice but colour-matching to specific colours can be achieved on request. After a cleaning process, the surface is chromate-converted to enhance corrosion resistance and optimise adhesion of the thermosetting.

Aluminium is a proven construction material for buildings, vehicles, appliances and products, both as a framing and cladding material. In the building industry, it is by far the most common material used for window and door joinery, curtain walls and shop fronts. It is widely used in every aspect of the transport, leisure, boating and household appliance industries. Its selection is based on many criteria - one being its ease of fabrication to provide visual appeal and easy maintenance.

Aluminium has natural beauty and lustre of its own, yet its surface can be treated in various ways to protect and enhance its appearance, which can be maintained with regular, lowmaintenance attention.

The surface of fabricated aluminium, whether untreated, anodised or coated, can be spoiled by improper care. Here, we briefly summarise the methods of maintaining good appearance of aluminium surfaces after installation. Usually this care is no more than periodic cleaning, as in eg: window glass. Anodising treatment will substantially enhance appearance, render the surface more resistant to various forms of attack and facilitate cleaning and maintenance.

The Architectural Aluminium Fabricators' Association of New Zealand has published a guide which deals with all aspects of design and use, care and maintenance. Here we only briefly highlight the cleaning aspect since it applies to so many users of architectural aluminium products.

Grime which causes deterioration cannot be prevented from settling on exposed surfaces. If cleaned reasonably frequently then the mildest methods of washing will produce satisfactory results. There are many ways to clean aluminium, from using plain water to harsh abrasives. The type of cleaning that should be used is governed by the finish, degree of soiling, and the size, shape and location of the surface to be cleaned. The mildest method possible should be used, particularly for aluminium which has been anodised.

With anodised aluminium, surface deterioration occurs as a result of grime deposition and contaminated moisture attack. In coastal environments it is caused by airborne chlorides, in industrial or urban environments by sulphur compounds. Grime deposits absorb contaminated moisture like a sponge, assisting attack on the film, which cannot be restored without removal. Cleaning frequency depends on accessibility and environmental severity. In rural areas, cleaning may be needed only every six months. In industrial and marine environments, cleaning is recommended at least every three months, preferably monthly.

The following cleaning materials and procedures are listed in order from mild to harsh. The mildest treatment should be tried on a small area and if not satisfactory only then should the next be examined:
I. Plain water
2. Water with mild soap or detergent
3. Solvents, eg: kerosene, turpentine, white spirit.
4. Non-etching chemical cleaner
5. Wax-based polish
6. Abrasive wax
7. Abrasives

After applying cleaning agents, the surface should be washed down thoroughly and dried with a clean cloth to prevent streaking. There should be no concentration of cleaning agents at the bottom edges of the aluminium. If using proprietary cleaning solutions, manufacturers' recommendations should be obtained and followed carefully.

If abrasives are used, the appearance of the aluminium finish may be altered. If there is a grain in the finish, cleaning action should always be with the grain. If the condition of the surface indicates the use of abrasive or etching materials, it is advisable to consult a cleaning specialist. If all other methods fail it may be necessary to resort to heavy-duty cleaning. This involves cleaning methods using strong etching chemicals or coarser abrasives.

Profiles in one process

Typical preliminary processes for more complex extrusions

CONVERSION BASICS

Linear	
I inch	25.4 mm
I foot	0.3048 m
I mm	0.0394 inches
I m	3.28 feet
Area	
I sq inch	645 sq mm
I sq foot	0.0929 sq m
I sq mm	0.00 I 55 sq in
I sq m	10.84 sq ft
Volume	
I cubic inch	16387 cu mm
I cu mm	0.00006 I cu in
Force	
I lb per sq ft	4.45 Newtons
I Newton	0.225 lbs per ft
Stress	
I lb per sq in	0.00689 MPa
I MPa	I 45 lbs per sq in

DIAGRAMS ACTUAL SIZE UNLESS OTHERWISE INDICATED.

inches	mm	inches	mm
1 1/32	26.1938	$31 / 32$	76.9938
1 1/16	26.9875	$31 / 16$	77.7875
1 3/32	27.7813	$33 / 32$	78.5813
$11 / 8$	28.5750	$31 / 8$	79.3750
1 5/32	29.3688	$35 / 32$	80.1688
1 3/16	30.1625	3 3/16	80.9625
$17 / 32$	30.9563	$37 / 32$	81.7563
1 1/4	31.7500	$31 / 4$	82.5500
19/32	32.5438	3 9/32	83.3438
1 5/16	33.3375	$35 / 16$	84.1375
\| 11/32	34.1313	$311 / 32$	84.9313
$13 / 8$	34.9250	$33 / 8$	85.7250
1 13/32	35.7188	$313 / 32$	86.5188
$17 / 16$	36.5125	$37 / 16$	87.3125
\| 15/32	37.3063	$315 / 32$	88.1063
I I/2	38.1000	$31 / 2$	88.9000
1 17/32	38.8938	$317 / 32$	89.6938
19/16	39.6875	$39 / 16$	90.4875
1 19/3	40.4813	$319 / 32$	91.2813
1 5/8	41.2750	3 5/8	92.0750
\| $21 / 32$	42.0688	$321 / 32$	92.8688
1 11/16	42.8625	$311 / 16$	93.6625
\| 23/32	43.6563	$323 / 32$	94.4563
$13 / 4$	44.4500	$33 / 4$	95.2500
I 25/32	45.2438	3 25/32	96.0438
1 13/16	46.0375	$313 / 16$	96.8375
1 27/32	46.8313	3 27/32	97.6313
$17 / 8$	47.6250	$37 / 8$	98.4250
1 29/32	48.4188	3 29/32	99.2188
1 15/16	49.2125	$315 / 16$	100.0120
\| 31/32	50.0063	3 31/32	100.8060
2 inches	50.8000	4 inches	101.6000
$21 / 32$	51.5938	$41 / 32$	102.3940
$21 / 16$	52.3875	$41 / 16$	103.1880
$23 / 32$	53.1813	$43 / 32$	103.9810
$21 / 8$	53.9750	$41 / 8$	104.7750
$25 / 32$	54.7688	$45 / 32$	105.5690
$23 / 16$	55.5625	$43 / 16$	106.3620
$27 / 32$	56.3563	$47 / 32$	107.1560
$21 / 4$	57.1500	$41 / 4$	107.9500
$29 / 32$	57.9438	$49 / 32$	108.7440
$25 / 16$	58.7375	$45 / 16$	109.5380
$211 / 32$	59.5313	$411 / 32$	110.3310
$23 / 8$	60.3250	$43 / 8$	111.1250
$213 / 32$	61.1188	$413 / 32$	111.9190
$27 / 16$	61.9125	4 7/16	112.7120
$215 / 32$	62.7063	$415 / 32$	113.5060
$21 / 2$	63.5000	$41 / 2$	114.3000
2 17/32	64.2938	4 17/32	115.0940
$29 / 16$	65.0875	$49 / 16$	115.8880
2 19/32	65.8813	4 19/32	116.6810
2 5/8	66.6750	4 5/8	117.4750
2 21/32	67.4688	4 21/32	118.2690
$211 / 16$	68.2625	$411 / 16$	119.0620
$223 / 32$	69.0563	4 23/32	119.8560
$23 / 4$	69.8500	$43 / 4$	120.6500
$225 / 32$	70.6438	4 25/32	121.4440
$213 / 16$	71.4375	4 13/16	122.2380
2 27/32	72.2313	$427 / 32$	123.0310
$27 / 8$	73.0250	$47 / 8$	123.8250
2 29/32	73.8188	4 29/32	124.6190
$215 / 16$	74.6125	4 15/16	125.4120
$231 / 32$	75.4063	4 31/32	126.2060
3 inches	76.2000	5 inches	27.0000

inches mm

| $51 / 32$ | 127.794 |
| :--- | :--- | :--- |
| $51 / 16$ | 128.588 |
| $53 / 32$ | 129.381 |
| $51 / 8$ | 130.175 |
| $55 / 32$ | 130.969 |
| $53 / 16$ | 131.762 |
| $57 / 32$ | 132.556 |
| $51 / 4$ | 133.350 |
| $59 / 32$ | 134.144 |
| $55 / 16$ | 134.938 |
| $511 / 32$ | 135.731 |
| $53 / 8$ | 136.525 |
| $513 / 32$ | 137.319 |
| $57 / 16$ | 138.112 |

5	$15 / 32$	138.906

$\begin{array}{ll}5 & 1 / 2 \\ 5 & 139.700\end{array}$
$\begin{array}{lll}5 & 17 / 32 & 140.494\end{array}$
$\begin{array}{lll}59 / 16 & 141.288\end{array}$
5 19/32 |42.08|
$\begin{array}{ll}5 \text { 5/8 } & 142.875\end{array}$
$521 / 32 \quad 143.669$
$\begin{array}{lll}511 / 16 & 144.462\end{array}$
5 23/32 145.256
$\begin{array}{lll}53 / 4 & 146.050\end{array}$
5 25/32 146.844
$\begin{array}{lll}513 / 16 & 147.638\end{array}$
5 27/32 148.431
$57 / 8 \quad 149.225$
$\begin{array}{lll}5 & 29 / 32 \quad 150.019\end{array}$
5 15/16 | 50.812
5 3I/32 |5I.606
6 inches 152.400
6 I/16 I53.988
6 I/8 $\quad 155.575$
$63 / 16 \quad 157.162$
$61 / 4 \quad 158.750$
$65 / 16 \quad 160.338$
$63 / 8 \quad 161.925$
$67 / 16 \quad 163.512$
$61 / 2 \quad 165.100$
$69 / 16 \quad 166.688$
$65 / 8 \quad 168.275$
$611 / 16 \quad 169.862$
$63 / 4 \quad 171.450$
$613 / 16 \quad 173.038$
$67 / 8 \quad 174.625$
$615 / 16 \quad 176.212$
7 inches 177.800
7 I/16 179.388
$71 / 8 \quad 180.975$
$73 / 16 \quad 182.562$
7 I/4 I84.150
7 5/16 185.738
$\begin{array}{ll}73 / 8 & 187.325\end{array}$
$77 / 16 \quad 188.912$
$71 / 2 \quad 190.500$
$79 / 16 \quad 192.088$
$75 / 8 \quad 193.675$
$711 / 16 \quad 195.262$
$73 / 4 \quad 196.850$
$713 / 16 \quad 198.438$
$77 / 8 \quad 200.025$
$715 / 16 \quad 201.612$
8 inches 203.200

inches	m		ins	mm	$f t$	ins	mm	feet	mm
$81 / 16$	204.788	1	1	330.200	65	5	1955.80	31	9448.80
$81 / 8$	206.375	1	2	355.600	66	6	1981.20	32	9753.60
$83 / 16$	207.962	1	3	381.000	67	7	2006.60	33	10,058.4
$81 / 4$	209.550	1	4	406.400	68	8	2032.00	34	10,363.2
8 5/16	211.138	I	5	431.800	6	9	2057.40	35	10,668.0
$83 / 8$	212.725	1	6	457.200		10	2082.80	36	10,972.8
$87 / 16$	214.312	1	7	482.600		1	2108.20	37	11,277.6
8 1/2	215.900	1	8	508.000	7	0	2133.60	38	11,582.4
$89 / 16$	217.488	1	9	533.400	7	1	2159.00	39	11,887.2
$85 / 8$	219.075	1	10	558.800	72	2	2184.40	40	12,192.0
811/16	220.662	1	11	584.200	7	3	2209.80	41	12,496.8
$83 / 4$	222.250	2	0	609.600	7	4	2235.20	42	12,801.6
$813 / 16$	223.838	2	1	635.000	7	5	2260.60	43	13,106.4
$87 / 8$	225.425	2	2	660.400	7	6	2286.00	44	13,4\|1.2
815/16	227.012	2	3	685.800	7	7	2311.40	45	13,716.0
9 inches	228.600	2	4	711.200	78	8	2336.80	46	14,020.8
$91 / 16$	230.188	2	5	736.600	79	9	2362.20	47	14,325.6
$91 / 8$	231.775	2	6	762.000		0	2387.60	48	14,630.4
9 3/16	233.362	2	7	787.400		1	2413.00	49	14,935.2
$91 / 4$	234.950	2	8	812.800	8	0	2438.40	50	15,420.0
9 5/16	236.538	2	9	838.200	8	1	2463.80	51	15,544.8
$93 / 8$	238.125	2	10	863.600	82	2	2489.20	52	15,849.6
$97 / 16$	239.712	2	11	889.000	8	3	2514.60	53	16,154.4
$91 / 2$	241.300	3	0	914.400	84	4	2540.00	54	16,459.2
$99 / 16$	242.888	3	1	939.800	85	5	2565.40	55	16,764.0
9 5/8	244.475	3	2	965.200	86	6	2590.80	56	17,068.8
$911 / 16$	246.062	3	3	990.600	87	7	2616.20	57	17,373.6
$93 / 4$	247.650	3	4	1016.00	88	8	2641.60	58	17,678.4
$913 / 16$	249.238	3	5	1041.40	8	9	2667.00	59	17,983.2
$97 / 8$	250.825	3	6	1066.80		10	2692.40	60	18,288.0
$915 / 16$	252.412	3	7	1092.20		1	2717.80	61	18,592.8
10 inches	254.000	3	8	1117.60	9	0	2743.20	62	18,897.6
$101 / 16$	255.588	3	9	1143.00	9	1	2768.60	63	19,202.4
$101 / 8$	257.175	3	10	1168.40	9	2	2794.00	64	19,507.2
$103 / 16$	258.762	3	11	1193.80	9	3	2819.40	65	19,812.0
$101 / 4$	260.350	4	0	1219.20	9	4	2844.80	66	20,116.8
10 5/16	261.938	4	1	1244.60	9	5	2870.20	67	20,421.6
$103 / 8$	263.525	4	2	1270.00	9	6	2895.60	68	20,726.4
$107 / 16$	265.112	4	3	1295.40	97	7	2921.00	69	21,031.2
10 1/2	266.700	4	4	1320.80	8	8	2946.40	70	21,336.0
$109 / 16$	268.288	4	5	1346.20	9	9	2971.80	71	21,640.8
$105 / 8$	269.875	4	6	1371.60		10	2997.20	72	21,945.6
$1011 / 16$	271.462	4	7	1397.00	91		3022.60	73	22,250.4
$103 / 4$	273.050	4	8	1422.40	10	0	3048.00	74	22,555.2
10 13/16	274.638	4	9	1447.80	11	0	3352.80	75	22,860.0
$107 / 8$	276.225	4	10	1473.20	12	0	3657.60	76	23,164.8
$1015 / 16$	277.812	4	11	1498.60	13	0	3962.40	77	23,469.6
11 inches	279.400	5	0	1524.00	14	0	4267.20	78	23,774.4
11 1/16	280.988	5	1	1549.40	15	0	4572.00	79	24,079.2
$111 / 8$	282.575	5	2	1574.80	16	0	4876.80	80	24,384.0
11 3/16	284.162	5	3	1600.20	17	0	5181.60	81	24,688.8
11 1/4	285.750	5	4	1625.60	18	0	5486.40	82	24,993.6
II 5/16	287.338	5	5	1651.00	19	0	5791. 20	83	25,298.4
$113 / 8$	288.925	5	6	1676.40	20	0	6096.00	84	25,603.2
$117 / 16$	290.512	5	7	1701.80	21	0	6400.80	85	25,908.0
$111 / 2$	292.100	5	8	1727.20	22	0	6705.60	86	26,212.8
$119 / 16$	293.688	5	9	1752.60	23	0	7010.40	87	26,517.6
$115 / 8$	295.275	5	10	1778.00	24	0	7315.20	88	26,822.4
11 11/16	296.862	5	11	1803.40	25	0	7620.00	89	27,127.2
11 3/4	298.450	6	0	1828.80	26	0	7924.80	90	27,432.0
11 13/16	300.038	6	1	1854.20	27	0	8229.60	91	27,736.8
$117 / 8$	301.625	6	2	1879.60	28	0	8534.40	92	28,041.6
11 15/16	303.212	6	3	1905.00	29	0	8839.20	93	28,346.4
12 inches	304.800	6	4	1930.40	30	0	9144.00	94	28,65I.2

Phone for your nearest

ULLRICH ALUMINIUM SALES CENTRE
AUSTRALIA - I300 650075
NEW ZEALAND - 0800500338

- ALUMINIUM EXTRUSIONS
- ROLLED PRODUCTS
- FASTENINGS
- LADDERS
- SCAFFOLDS
- ULLTRACLAD CLADDING
- WINTEC WINDOWS \& DOORS
- BUILDING PRODUCTS
- DECORATIVE METALS
- ULLTIMATE SERIES WINDOWS \& DOORS

Representative operations throughout the South Pacific

ULLRICH ALUMINIUM CO LTD
PO Box 98843 Manukau City Auckland 224I
118 Wiri Station Road Wiri 2104 New Zealand Tel +6492626262 Fax +6492626266 alkalum@uacl.co.nz www.ullrich.co.nz

[^0]: DIAGRAMS ACTUAL SIZE UNLESS
 OTHERWIS INDICATED
 DIAGRAMS ARE SCHEMATIC ONLY
 AND NOT INTENDED AS AND NOT INTENDED AS
 SPECFICATION DRAWING
 OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

[^1]: DIAGRAMS ACTUAL SIZE UNL THERWISE INDICATED. DIAGRAMS ARE SCHEMATIC SPECFICATION DRAWINGS. OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

[^2]: SIAGRAMS ACTUAL SIZE UNLISS
 THERWIIE INDICATED
 IAGRAMS ARE SCHEMATC ONIY AND NOT INTENDED AS
 OAD $=$ OVERALL DIMENSIONS $\mathbf{P}=\mathrm{EXT}$ PERIPHERY

[^3]: DIAGRAMS ACTUAL SIZE UNIESS OTHERWISE INDICATED. DIAGRAMS ARE SCHEMATC ONLY AND NOT INTENDED AS SPECIFICATION DRAWINGS. OAD $=$ OVERALL DMENSIONS

[^4]: DIAGRAMS ACTUAL SIZE UNLESS THERWISE INDICATED.
 AND NOT INTENDED AS OL AND NOT INTENDED AS OAD = OVERALL DIMENSIONS $\mathbf{P}=$ EXT PERIPHERY

[^5]: - ULLRICH ALUMINIUM CO LTD

[^6]: NOTE: Not all products are available ex-stock, check with your local branch for advice on availability.

